Question

A thin metal rod of mass 1.8 kg and length 0.9 m is at rest in outer space, near a space station (see figure below).

A thin metal rod of mass 1.8 kg and length 0.9 m is at rest in outer space, near a space station (see figure below). A tiny meteorite with mass 0.06 kg traveling at a high speed of 250 m/s strikes the rod a distance 0.2 m from the center and bounces off with speed 60 m/s as shown in the diagram. The magnitudes of the initial and final angles to the x axis of the small mass's velocity are θ = 26° and θ = 82°. 

image.png

(a) Afterward, what is the velocity of the center of the rod? 

(b) Afterward, what is the angular velocity o of the rod?

(c) What is the increase in internal energy of the objects?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A thin metal rod of mass 1.8 kg and length 0.9 m is at rest in outer space, near a space station (see figure below).
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A thin metal rod of mass 1.7 kg and length 0.7 m is at rest in...

    A thin metal rod of mass 1.7 kg and length 0.7 m is at rest in outer space, near a space station (see figure below). A tiny meteorite with mass 0.07 kg traveling at a high speed of 235 m/s strikes the rod a distance 0.2 m from the center and bounces off with speed 60 m/s as shown in the diagram. The magnitudes of the initial and final angles to the x axis of the small mass's velocity are...

  • A uniform thin rod of length 0.65 m and mass 3.4 kg can rotate in a horizontal plane about a vert...

    A uniform thin rod of length 0.65 m and mass 3.4 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.8 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle θ = 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 11.0 rad/s...

  • The figure below shows a uniform rod of length L=0.9 m and mass M (not required...

    The figure below shows a uniform rod of length L=0.9 m and mass M (not required in answer) which is free to rotate about one end, and which is initially at rest at an angle θ=40º with respect to the horizontal. Find the (linear) speed of the center of mass of the rod when it reaches the vertical position (θ=-90°). o Pin

  • A uniform thin rod of length 0.500 m and mass 4.00 kg is attached to a...

    A uniform thin rod of length 0.500 m and mass 4.00 kg is attached to a pivot at one end. The other end of the rod is attached to a uniform sphere with a mass of 2.00 kg and a radius of 0.100 m. The rod and sphere initially hang vertically. A bullet with a mass of 5.00 g is fired horizontally at a speed of 200 m/s into the center of the sphere. The bullet embeds itself in the...

  • Consider a non-rotating space station in the shape of a long thin uniform rod of mass...

    Consider a non-rotating space station in the shape of a long thin uniform rod of mass 6.65 x 10^6 kg and length 574 meters. Rocket motors on both ends of the rod are ignited, applying a constant force of F = 9.48 x 10^5 N to each end of the rod as shown in the diagram, causing the station to rotate about its center. If the motors are left running for 2 minutes and 21 seconds before 3.94 rpm 9.84...

  • The uniform thin rod in the figure below has mass M = 4.00 kg and length...

    The uniform thin rod in the figure below has mass M = 4.00 kg and length L = 2.21 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. (a) the rod's angular acceleration (in rad/s2) rad/s2 (b) the tangential acceleration...

  • Mass of station is 3.8X106 Suppose once again that the space station begins at rest, not...

    Mass of station is 3.8X106 Suppose once again that the space station begins at rest, not rotating. This time, instead of using rocket engines attached to the spherical end modules, we will have small probes periodically launched from two points on the rod-shaped part of the station as shown. The probes will launch in pairs in opposite directions, each individual probe of identical mass 1287 kg and launched at a speed of 15900 m/s with respect to the space station....

  • In the figure, a thin uniform rod (mass 4.6 kg, length 5.0 m) rotates freely about...

    In the figure, a thin uniform rod (mass 4.6 kg, length 5.0 m) rotates freely about a horizontal axis A that is perpendicular to the rod and passes through a point at a distance d = 1.4 m from the end of the rod. The kinetic energy of the rod as it passes through the vertical position is 18 J. (a) what is the rotational inertia of the rod about axis A? (b) what is the (linear) speed of the...

  • Chapter 11, Problem 053 GO A uniform thin rod of length 0.61 m and mass 3.3...

    Chapter 11, Problem 053 GO A uniform thin rod of length 0.61 m and mass 3.3 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 4.4 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle 9 -60° with the rod. If the bullet lodges in the rod and the angular velocity of the...

  • These questions concern a space station, consisting of a long thin uniform rod of mass 4.3 x 10^6 kg and length 769 meters, with two identical uniform hollow spheres, each of mass 1.7 x 10^6 kg and ra...

    These questions concern a space station, consisting of a long thin uniform rod of mass 4.3 x 10^6 kg and length 769 meters, with two identical uniform hollow spheres, each of mass 1.7 x 10^6 kg and radius 218 meters, attached at the ends of the rod, as shown below. Please note that none of the diagrams shown is drawn to scale. A. Suppose that the station starts out at rest (not rotating). What we want is to get it...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT