Question

The figure shows a container of mass m2 = 2.6 kg connected to a block of mass m2 by a cord looped around a frictionless pulley

The figure shows a container of mass m2 = 2.6 kg connected to a block of mass m2 by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 0.88 m/s2 across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m2? 

image.png

image.png

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution :

m1 = 2.6 kg

a = 0.88 m/s2

.

Free-body diagrams :

.

For block of mass m1: Fnet = T = m1 a

∴ T = m1 a = (2.6 kg)(0.88 m/s2) = 2.288 N

Therefore, Tension in the cord will be : T = 2.288 N

.

For block of mass m2: Fnet = m2 g - T = m2 a

∴ m2 g - m2 a = T

∴ m2 (g - a) = T

∴ m2 (9.81 m/s2 - 0.88 m/s2) = (2.288 N)

∴ m2 = 0.256 kg

.

Add a comment
Know the answer?
Add Answer to:
The figure shows a container of mass m2 = 2.6 kg connected to a block of mass m2 by a cord looped around a frictionless pulley
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • The figure shows two blocks connected by a cord (of negligible mass) that passes over a...

    The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m2 = 1.00 kg; block 2 has mass m2 = 3.30 kg. What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord? IN (a) Number Units m/s2 (b) Number Units N

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • The figure shows two blocks connected by a cord (of negligible mass) that passes over a...

    The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m - 1.2 kg; block 2 has mass m2 = 2.7 kg. What are (a) the magnitude of the blocks'acceleration and (b) the tension in the cord? (a) Number Units (b) Number Units

  • A mass m2 = 15.0 kg is connected by a light cord to a mass m1...

    A mass m2 = 15.0 kg is connected by a light cord to a mass m1 = 15.0 kg, which slides on a smooth horizontal surface. The pulley, of mass M = 1.00 kg, rotates about a frictionless axle and has a radius R = 0.200 m and a moment of inertia I = 0.0900 kg-m2 . The cord does not slip on the pulley. a) What is the magnitude of the acceleration of m1? b) What is the tension...

  • Two masses are connected by a cord that passes over a pulley as shown in the...

    Two masses are connected by a cord that passes over a pulley as shown in the figure. The pulley and cord have negligible mass and m1 (2.0 kg) moves on a horizontal surface without friction, m2 (2.0 kg) is suspended vertically. What is the ACCELERATION of m1? Question4 2/2 pts Two masses are connected by a cord that passes over a pulley as shown in the figure. The pulley and cord have negligible mass and mı (2.0 kg) moves on...

  • Please help, I dont understand this... A block of mass m1 = 34 kg on a...

    Please help, I dont understand this... A block of mass m1 = 34 kg on a horizontal surface is connected to a mass m2 = 16.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.23. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? (b)...

  • The figure shows two blocks connected by a light cord over a pulley. This apparatus is...

    The figure shows two blocks connected by a light cord over a pulley. This apparatus is known as an Atwood's machine. There is no slipping between the cord and the surface of the pulley. The pulley itself has negligible friction and it has a radius of 0.12 m and a mass of 10.3 kg. We can model this pulley as a solid uniform disk. At the instant that the heavier block has descended 1.5 m starting from rest, what is...

  • 00-64 Figure 5-56 shows a box of mass m2 = 1.0 kg on a friction- less...

    00-64 Figure 5-56 shows a box of mass m2 = 1.0 kg on a friction- less plane inclined at angle θ= 30°. It is connected by a cord of negligible mass to a box of mass m 3.0 kg on a horizontal fric- tionless surface. The pulley is frictionless and massless. (a) If the magnitude of horizontal force F is 2.3 N, what is the tension in the connecting cord? (b) What is the largest value the magnitude of F...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT