Question

The Gravitron is an amusement park ride in which riders stand against the inner wall of...

The Gravitron is an amusement park ride in which riders stand against the inner wall of a large spinning steel cylinder. At some point, the floor of the Graviton drops out, instilling the fear in riders that they will fall a great height. However, the spinning motion of the Gravitron allows them to remain safely inside the ride. Most Gravitrons feature vertical walls, but the example shown in the figure has tapered walls of 25.7o. According to knowledgeable sources, the coefficient of static friction between typical human clothing and steel ranges between 0.250 to 0.390. In the figure, the center of mass of a 54.6 kg rider resides 3.00 m from the axis of rotation. As a safety expert inspecting the safety of rides at a county fair, you want to reduce the chances of injury. What minimum rotational speed (expressed in rev/s) is needed to keep the occupants from sliding down the wall during the ride?

What is the maximum rotational speed at which the riders will not slide up the walls of the ride?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Add a comment
Know the answer?
Add Answer to:
The Gravitron is an amusement park ride in which riders stand against the inner wall of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of...

    Circular Motion The Gravitron is a superfun amusement park ride! People stand on the inside of a cylindrical chamber, and when the cylindar spins and the floor drops out, the riders stick to the sides. Assume the Gravitron in the figure shown has a radius of 2.3 m and the coefficient of static friction between the persons' clothes and the walls is mu_s = 0.65. How fast should the Gravitron spin to ensure that an 85 kg person will stick...

  • On the ride "Spindletop" at an amusement Park, people stood against the inner wall of a...

    On the ride "Spindletop" at an amusement Park, people stood against the inner wall of a hollow vertical cylinder with radius 2.5 m. The cylinder begins to turn, the rider, wall, and the floor moves in unison. When the cylinder reaches a constant speed of 7.2 m/s, the floor on which the rider is drops off. The rider does not fall with it but instead is pinned against the wall. (a) What is the minimum coefficient of static friction? (b)...

  • In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once...

    In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom of the room! Friction between the walls of the room and the people on the ride make them the "stick" to the wall so they do not slide down. In one ride, the radius of the cylindrical room is R = 6.4 m and the room spins with a frequency of 21.8...

  • An amusement park ride consists of a rotating vertical cylinder with rough canvas walls. The floor...

    An amusement park ride consists of a rotating vertical cylinder with rough canvas walls. The floor is initially about halfway up the cylinder wall as shown. After the rider has entered and the cylinder is rotating sufficiently fast, the floor is dropped down, , yet the rider does not slide down. The rider has mass of 50 kg. The diameter of the cylinder is 6.5 meters. The coefficient of static friction between the rider and wall of the cylinder is...

  • I need the answers for 5 and 6 parts In a classic carnival ride, patrons stand...

    I need the answers for 5 and 6 parts In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom of the room! Friction between the walls of the room and the people on the ride make them the "stick" to the wall so they do not slide down. In one ride, the radius of the cylindrical room is R = 6.1 m...

  • In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once...

    In a classic carnival ride, patrons stand against the wall in a cylindrically shaped room. Once the room gets spinning fast enough, the floor drops from the bottom of the room! Friction between the walls of the room and the people on the ride make them the "stick" to the wall so they do not slide down. In one ride, the radius of the cylindrical room is R 6m and the room spins with a frequency of 23.2 revolutions per...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT