Question

Consider a frictionless track as shown in the figure below. A block of mass m1 =...

Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.60 kg is released from circled A. It makes a head-on elastic collision at circled B with a block of mass m2 = 19.5 kg that is initially at rest. Calculate the maximum height to which m1 rises after the collision.

Consider a frictionless track as shown in the figu

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mis

Add a comment
Know the answer?
Add Answer to:
Consider a frictionless track as shown in the figure below. A block of mass m1 =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.65 kg is released from A

    Consider a frictionless track as shown in the figure below. A block of mass  m1 = 5.65 kg is released from  A. It makes a head-on elastic collision at  B with a block of mass  m2 = 20.0 kg  that is initially at rest. Calculate the maximum height to which m1 rises after the collision.Two masses are shown on a frictionless wooden track. The left part of the track curves downward from left to right, starting from an almost-vertical slope and then decreasing in...

  • 2003 Thomson - Brooks/Cole m2 FIGURE P6.48 (c6p48) Consider a frictionless track as shown in Figure...

    2003 Thomson - Brooks/Cole m2 FIGURE P6.48 (c6p48) Consider a frictionless track as shown in Figure P6.48. A block of mass m1 = 5.0 kg is released from A, at a height h = 13.0 m. It makes a head-on elastic collision at B with a block of mass m2 = 11.0 kg that is initially at rest. Calculate the maximum height to which mi rises after the collision. Submit Answer Tries 0/8 This discussion is closed. Send Feedback

  • Two blocks are free to slide along the frictionless wooden track shown below. The block of...

    Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.03 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 9.50 kg, initially at rest. The...

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.98 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.05 kg, determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. As shown in the figure...

  • Two blocks are free to slide along the frictionless wooden track shown below. The block of...

    Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m_1 = 4.92 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m_z = 9.40 kg initially at rest. The...

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of  h = 4.18 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.15 kg,determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. y1f= ??m y2f=????m

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.83 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.45 kg,determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. y1f = m y2f = m...

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.28 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.75 kg, determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. y1f = m y2f =...

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 4.78 m

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 4.78 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 3.85 kg, determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. 

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT