Question

2003 Thomson - Brooks/Cole m2 FIGURE P6.48 (c6p48) Consider a frictionless track as shown in Figure P6.48. A block of mass m1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m. = 5.0kg h = 13.0m m2 = 110 kg u = √2gb = √2x9.81* 13.0 » u,= 15.97 mls. Uz =0 Conservation : Momentum miu,+ m2 42 = mvi+ M

Add a comment
Know the answer?
Add Answer to:
2003 Thomson - Brooks/Cole m2 FIGURE P6.48 (c6p48) Consider a frictionless track as shown in Figure...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a frictionless track as shown in the figure below. A block of mass m1 =...

    Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.60 kg is released from circled A. It makes a head-on elastic collision at circled B with a block of mass m2 = 19.5 kg that is initially at rest. Calculate the maximum height to which m1 rises after the collision.

  • Consider a frictionless track as shown in the figure below. A block of mass m1 = 5.65 kg is released from A

    Consider a frictionless track as shown in the figure below. A block of mass  m1 = 5.65 kg is released from  A. It makes a head-on elastic collision at  B with a block of mass  m2 = 20.0 kg  that is initially at rest. Calculate the maximum height to which m1 rises after the collision.Two masses are shown on a frictionless wooden track. The left part of the track curves downward from left to right, starting from an almost-vertical slope and then decreasing in...

  • В P 2003 Thomson-Brooks/Cole FIGURE P13.55 (c13p55) A large block P executes horizontal simple harmonic motion...

    В P 2003 Thomson-Brooks/Cole FIGURE P13.55 (c13p55) A large block P executes horizontal simple harmonic motion as it slides across a frictionless surface with a frequency f = 2.5Hz. Block B rests on it, as shown in Figure P13.55, and the coefficient of static friction between the two is 0.49. What maximum amplitude of oscillation can the system have if block B is not to slip? Tries 0/15 Submit Answer

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.98 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.05 kg, determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. As shown in the figure...

  • Two blocks of masses m1 = 1.82 kg and m2 = 4.17 kg are each released...

    Two blocks of masses m1 = 1.82 kg and m2 = 4.17 kg are each released from rest at a height of h = 4.85 m on a frictionless track, as shown in the figure, and undergo an elastic head-on collision m m2 Determine the velocity of the mi block just before the collision. (Use positive sign if the motion is to the right, negative if it is to the left.) 9.75 m/s You are correct. Your receipt no. is...

  • Two blocks are free to slide along the frictionless wooden track shown below. The block of...

    Two blocks are free to slide along the frictionless wooden track shown below. The block of mass m1 = 5.03 kg is released from the position shown, at height h = 5.00 m above the flat part of the track. Protruding from its front end is the north pole of a strong magnet, which repels the north pole of an identical magnet embedded in the back end of the block of mass m2 = 9.50 kg, initially at rest. The...

  • 2003 Thomson - Brooks/Cole 130° 30°1 A stainless steel orthodontic wire is applied to a tooth,...

    2003 Thomson - Brooks/Cole 130° 30°1 A stainless steel orthodontic wire is applied to a tooth, as shown in the figure above. The wire has an unstretched length of 25 mm and a cross sectional area of 2 mm. The wire is stretched 0.1 mm. Young's modulus for stainless steel is 1.8 x 1011 Pa. What is the tension in the wire? Submit Answer Tries 0/20

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.83 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.45 kg,determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. y1f = m y2f = m...

  • As shown in the figure below, two blocks (m1 and m2) are each released from rest...

    As shown in the figure below, two blocks (m1 and m2) are each released from rest at a height of h = 3.28 m on a frictionless track and when they meet on the horizontal section of the track they undergo an elastic collision. If m1 = 2.50 kg and m2 = 4.75 kg, determine the maximum heights (in m) to which they rise after the collision. Use the coordinate system shown in the figure. y1f = m y2f =...

  • Figure shown above.Please show all work with algebra. На m2 Problem 3. 3. Two blocks of...

    Figure shown above.Please show all work with algebra. На m2 Problem 3. 3. Two blocks of masses m-1.0 kg and m2 2.0 kg are free to slide along a wooden track with a spring of force constant k 1000 N/m at one end, as shown in the figure below. The wooden track is frictionless except for a length of 1.5 m, where the coefficient of kinetic friction is 0.25. The block mi is released from rest at a height 1.0...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT