Question

A block of mass m = 4.50 kg slides along a horizontal table with velocity vo = 5.00 m/s


A block of mass m = 4.50 kg slides along a horizontal table with velocity vo = 5.00 m/s. At x = 0, it hits a spring with spring constant k = 42.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by μ = 0.400. How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.

image.png

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass m = 4.50 kg slides along a horizontal table with velocity vo = 5.00 m/s
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass ?=2.90 kg slides along a horizontal table with velocity ?0=2.00 m/s. At...

    A block of mass ?=2.90 kg slides along a horizontal table with velocity ?0=2.00 m/s. At ?=0, it hits a spring with spring constant ?=49.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by ?=0.350. How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.

  • A block of mass m = 2.75 kg slides along a horizontal table with speed v0...

    A block of mass m = 2.75 kg slides along a horizontal table with speed v0 = 1.00 m/s. At x = 0 it hits a spring with spring constant k = 82.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by μ = 0.100. How far has the spring compressed by the time the block first momentarily comes to rest?

  • A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal...

    A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal frictionless surface. At some point, it strikes a horizontal spring in equilibrium. If the spring constant is k = 26.1 N/m, by how much will the spring be compressed by the time the block comes to rest? b. What is the amount of compression if the surface is rough under the spring, with coefficient of kinetic friction µk = 0.411?

  • A block of mass m = 78 kg slides along a horizontal surface

    A block of mass m = 78 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.29. The block has an initial speed of v0 = 29 m/s in the positive x-direction as shown. a. Write an expression for the x-component of the frictional force the block experiences, Ff, in terms of the given variables and variables available in the palette. b. What is the magnitude of the frictional force in N? c....

  • A block of mass m = 63 kg slides along a horizontal surface.

    A block of mass m = 63 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is  μk= 0.41. The block has an initial speed of v0 = 16 m/s in the positive x-direction as shown. Part (a) Write an expression for the x-component of the frictional force the block experiences, Ff in terms of the given variables and variables available in the palette.Part (b) What is the magnitude of the frictional force in...

  • A block of mass m = 67 kg slides along a horizontal surface

    A block of mass m = 67 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.22. The block has an initial speed of v0= 16 m/s in the positive x-direction as shown.Part (a) Write an expression for the x-component of the frictional force the block experiences, Ff, in terms of the given variables and variables available in the palette. Part (b) What is the magnitude of the frictional force in...

  • 13.2) A 1.3 -kg block slides along a horizontal surface with a coefficient of friction μk...

    13.2) A 1.3 -kg block slides along a horizontal surface with a coefficient of friction μk = 0.274. The block has a speed v = 2.28 m/s when it strikes a massless spring head-on. a. If the spring has a force constant k = 30.9 N/m, how far is the spring compressed? b. What minimum value of the coefficient of static friction, μs, will assure the spring remains compressed at the maximum compressed position? c. If μs is less than...

  • A mass of 1 kg and initial speed 10 m/s slides across a horizontal frictionless surface...

    A mass of 1 kg and initial speed 10 m/s slides across a horizontal frictionless surface and hits a spring of force constant 200 N/m. How much will the spring be compressed from its relaxed length when the block will be at rest momentarily?

  • (S points) A o.5 kg block slides along a horizontal frictionless surface at 2.0 m/s. It...

    (S points) A o.5 kg block slides along a horizontal frictionless surface at 2.0 m/s. It is brought to rest by compressing a ve 16. sed long spring of spring constant 800 N/m. How far does the spring get compressed (in cm)? 17. (5 points) A block is released from rest at point P. h2 50 m high, and slides along the frictionless track shown. What is its speed at pointō匹=40 m high? h1 h2 ground level

  • 6.85 A 5.00-kg block is mov- Figure P6.85 ing at Vo=6.00 m/s along a frictionless, horizontal...

    6.85 A 5.00-kg block is mov- Figure P6.85 ing at Vo=6.00 m/s along a frictionless, horizontal surface toward a spring with force con- stant k=500 N/m that attached to a wall (Fig. P6.85). The spring has negligible mass. (a) Find the maximum distance the spring will be compressed. (b) If the spring is to compress by no more than 0.150 m, what should be the maximum value of vo? Vo = 6.00 m/s k = 500 N/m MMM 5.00 kg...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT