Question

A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal...

A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal frictionless surface. At some point, it strikes a horizontal spring in equilibrium. If the spring constant is k = 26.1 N/m, by how much will the spring be compressed by the time the block comes to rest?

b. What is the amount of compression if the surface is rough under the spring, with coefficient of kinetic friction µk = 0.411?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Using the energy equation

K.E + Wother = P.E

Where Wother = work done by other forces

1/2 mv2 - fk x = 1/2 kx2..............(1)

fk = ?kN=?k(mg)

1/2(0.528 kg )(3.60m/s)2 - (0.411)(0.528 kg)(9.80m/s2) x =1/2(26.1 N/m,)(x2)

Simplifying and arranging, we get

   13.05 x2 + 2.1267 x - 3.42 = 0

     x = 0.437 m

Add a comment
Know the answer?
Add Answer to:
A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass ?=2.90 kg slides along a horizontal table with velocity ?0=2.00 m/s. At...

    A block of mass ?=2.90 kg slides along a horizontal table with velocity ?0=2.00 m/s. At ?=0, it hits a spring with spring constant ?=49.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by ?=0.350. How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.

  • A block of mass m = 4.50 kg slides along a horizontal table with velocity vo = 5.00 m/s

    A block of mass m = 4.50 kg slides along a horizontal table with velocity vo = 5.00 m/s. At x = 0, it hits a spring with spring constant k = 42.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by μ = 0.400. How far has the spring compressed by the time the block first momentarily comes to rest? Assume the positive direction is to the right.

  • 3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then tra...

    3.0 kg block slides down a frictionless ramp of height 3.0 meters starting from rest. it then traverses a 2.0 metter rough patch with a coefficient of kinetic friction 0.35 It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 n/m. Please help me Solve the rest of the physics problem The answers to part A is x= 1.64 meters and part b is 1.58 meters Problem 1 A 3.0 kg block slides...

  • A block of mass m = 2.75 kg slides along a horizontal table with speed v0...

    A block of mass m = 2.75 kg slides along a horizontal table with speed v0 = 1.00 m/s. At x = 0 it hits a spring with spring constant k = 82.00 N/m and it also begins to experience a friction force. The coefficient of friction is given by μ = 0.100. How far has the spring compressed by the time the block first momentarily comes to rest?

  • A 16.0 kg block is released from point A in Figure P8.57. 3.60 m -5.50 m...

    A 16.0 kg block is released from point A in Figure P8.57. 3.60 m -5.50 m The track is frictionless except for the portion between B and C, which has a length of 5.50 m. The block travels down the track, hits a spring of force constant k = 1950 N/m, and compresses the spring 0.340 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between...

  • A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec....

    A 1.05 kg block slides on a frictionless, horizontal surface with an speed of 1.45 m/sec. The block encounters an unstretched spring with a spring constant of 285 N/m. 1)What is the initial kinetic energy of the block before it hits the spring? KE0 = 2)What is the potential energy of the mass and spring system when the spring is at its point of maximum compression? Umax = 3)How far is the spring compress before the block comes to rest?...

  • A 3.0 kg block slides down a frictionless wedge of height of 3.0 meters starting from...

    A 3.0 kg block slides down a frictionless wedge of height of 3.0 meters starting from rest. It then traverses a 2.0 meter rough patch with a coefficient of kinetic friction 0.35. It then gets to a smooth area where it compresses a horizontal spring of spring constant 50 N/m. a. How much is the spring compressed when the mass briefly comes to a stop? b. How high up the ramp does the mass make it when it makes it...

  • A physics student pulls a block of mass m = 22 kg up an incline at...

    A physics student pulls a block of mass m = 22 kg up an incline at a slow constant velocity for a distance of d = 4.5 m. The incline makes an angle ? = 32° with the horizontal. The coefficient of kinetic friction between the block and the inclined plane is µk = 0.3. 1) What is the work Wm done by the student? 2) At the top of the incline, the string by which she was pulling the...

  • Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far i...

    Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far is the spring compressed? Express your answer using two significant figures The other end of the spring is anchored against a wall The ground under the spring is frictionless, but the 2.3-m- long horizontal surface is rough. The coefficient of kinetic friction of the box...

  • A 16.0 kg block is released from point A in Figure P8.57. A 3.60 m -5.50...

    A 16.0 kg block is released from point A in Figure P8.57. A 3.60 m -5.50 m The track is frictionless except for the portion between B and C, which has a length of 5.50 m. The block travels down the track, hits a spring of force constant k = 1950 N/m, and compresses the spring 0.340 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT