Question

1. A block of mass m = 0.23 kg slides with initial velocityv0 = 1.4...

1. A block of mass m = 0.23 kg slides with initial velocity v0 = 1.4 m/s along a frictionless surface (as in the figure). The block next slides through a region of length d = 0.25 m with kinetic friction. After passing through the friction region, the block slides up a curved ramp until momentarily coming to rest at a height h above the level surface. If the kinetic friction coefficient μ k = 0.204, what height h does the block reach? Express the answer in meters but enter only the numerical part in the box.

-- m Vo -d-

2. Two blocks (masses m1 and m2) are on the double ramp (as shown). The region of length L is horizontal. The masses are released at the same time from points A and B (at heights h1 = 0.4 m and h2 = 0.29 m, respectively). The collision of the two masses (in the horizontal section) is completely inelastic. What is the ratio of the two masses (m1/m2) if the combined mass climbs to a height h3 = 0.057 after the collision? Your answer will be unitless (a simple ratio entered as a decimal number).

mi m2 B hi h2 L


0 0
Add a comment Improve this question Transcribed image text
Answer #1

Initial kinetic energy = (1/2)*0.23*(1.4)2 = 0.2254 J

Work by friction = -(0.204*0.23*9.8)*0.25 = 0.1150 J

Final Mechanical energy = 0.2254 - 0.1150 = 0.1104 J

0.1104 = 0.23*9.8*h ; hence h = 0.049 metres

Add a comment
Know the answer?
Add Answer to:
1. A block of mass m = 0.23 kg slides with initial velocityv0 = 1.4...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...

    Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. (a) What is the height h? (b) What is the...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 3.2 m and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction ?k is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.1 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.1 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.4 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h-3.3 m and then collides with stationary block 2, which has mass m2 = 4m1 After the collision, block 2 slides into a region where the coefficient of kinetic frictionPr įs045 and comes to a stop nd stance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Frictionless (a) Number Unit...

  • In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction is ?k and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Express your answer in...

  • A box with a mass of 8.67 kg slides up a ramp inclined at an angle...

    A box with a mass of 8.67 kg slides up a ramp inclined at an angle of 28.3° with the horizontal. The initial speed is 1.66 m/s and the coefficient of kinetic friction between the block and the ramp is 0.48. Determine the distance the block slides before coming to rest. m As shown in the figure below, a box of mass m = 35.0 kg is sliding along a horizontal frictionless surface at a speed vi = 5.55 m/s...

  • A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height...

    A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height 6 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: 1.Initial gravitational potential energy on Ramp #1: U1G = J 2.Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K =...

  • Question 12 of 14 > Final position A small block of mass m slides to the...

    Question 12 of 14 > Final position A small block of mass m slides to the left on a frictionless, horizontal surface with speed u. Then, the block slides up a rough ramp that has an incline angle of 8. The coefficient of kinetic friction between the ramp and box is p. The acceleration due to gravity is g. Rough surface Initial position What is the height h of the block when its speed up the ramp equals nu, where...

  • Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface...

    Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface toward a large curved movable ramp n and has a smooth circular frictionless face up which the block can easily slide. When the block slides up the ramp, it momentarily reaches a maximum height a shown in Figure II, and then slides back down the frictionless surface as shown in Figure III. face to the horizontal (a) Find the velocity of the ramp at...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT