Question

A solid block of mass m2 = 2.3 kg, at rest on a horizontalfrictionless surface,...

A solid block of mass m2 = 2.3 kg, at rest on a horizontal frictionless surface, is connected to a relaxed spring (with spring constant k = 260 N/m whose other end is fixed. Another solid block of mass m1 = 2.2 kg and speed v1 = 3.3 m/s collides with the 2.30 kg block. If the blocks stick together, what is their speed immediately after the collision?


What is the maximum compression of the spring?

0 0
Add a comment Improve this question Transcribed image text
Answer #2

Immediately after the collision the spring will not yet be compressed so it can ignored and the conservation of momentum applies.

Momentum before collision = 1.5 . 3.1

Momentum after collision = (1.5 + 1.7 ) V = 1.5 . 3.1

V = 1.45 m/s

This should be given as 1.5 m/s as the data support only 2 sf.

Add a comment
Know the answer?
Add Answer to:
A solid block of mass m2 = 2.3 kg, at rest on a horizontalfrictionless surface,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end...

    Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 144 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 3.60 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Answer 0.305 m My question is how did they solve...

  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • In the figure below, block-2 of mass M = 1 Kg is at rest on a...

    In the figure below, block-2 of mass M = 1 Kg is at rest on a frictionless surface and touching the end of an un-stretched spring whose spring constant is 200 N/m. The other end of the spring is fixed to a wall. Block-1 of mass 2 Kg, travelling at speed v_1 = 4 m/s, collides with block-2 and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?

  • Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on...

    Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 109 N/m. The other end of the spring is foxed to a wall. Block 1 (mass 1.20 kg), traveling at speed v1 - 4.10 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Number Units

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT