Question

Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision.

Before collision: m2 After collision:

What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

Express your answer numerically in joules.

Before collision: m2 After collision:
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Mass of block 1 = m1 = 9.1 kg

Mass of block 2 = m2 = 13 kg

Speed of block 1 before the collision = V1 = 27 m/s

Speed of block 2 before the collision = V2 = 0 m/s (At rest)

Speed of the blocks after the collision = V3

By conservation of linear momentum,

m1V1 + m2V2 = (m1 + m2)V3

(9.1)(27) + (13)(0) = (9.1 + 13)V3

V3 = 11.117 m/s

Initial kinetic energy of the system = KE1

KE1 = m1V12/2 + m2V22/2

KE1 = (9.1)(27)2/2 + (13)(0)2/2

KE1 = 3316.95 J

Final kinetic energy of the system = KE2

KE2 = (m1 + m2)V32/2

KE2 = (9.1 + 13)(11.117)2/2

KE2 = 1365.64 J

Change in kinetic energy of the system = \DeltaKE

\DeltaKE = KE2 - KE1

\DeltaKE = 1365.64 - 3316.95

\DeltaKE = -1951.31 J

Negative as energy is lost in the collision.

Change in the kinetic energy of the system due to the collision = -1951.31 J

Add a comment
Know the answer?
Add Answer to:
Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with...

    Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with speed v1v1v_1 = 27.0 m/sm/s . It collides with block 2, of mass m2m2m_2 = 57.0 kgkg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Figure 1 of 1The figure shows two states of a system of two blocks, labeled 1 and 2, of masses m 1 and m 2, respectively. Block 2 is to the right...

  • Block 1, of mass = 3.70 , moves along a frictionless air track with speed =...

    Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 23.0 . It collides with block 2, of mass = 13.0 , which was initially at rest. The blocks stick togetherafter the collision. part A Find the magnitude of the total initial momentum of the two-blocksystem. Express your answernumerically. part B Find , the magnitude of the final velocity of the two-blocksystem. Express your answer numerically part C What is the change in the...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A One-Dimensional Inelastic Collision Block 1, of mass n-8.70 ke. moves along a fiictioaless air track...

    A One-Dimensional Inelastic Collision Block 1, of mass n-8.70 ke. moves along a fiictioaless air track with speed ty-21.0 m/s. It collides with block 2, of mass mg510 kg, which was initially at rest. The blocks stick topether after the collision Before collision 2 After collision: Part A Find the manitade p of the total initial momentun of the two-block aystem Express your answer numerically You did not open hicts for this part. ANSWER: kg m/s Part B Find ,...

  • A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely...

    A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely inelastic collision with a stationary block of mass m2 = 0.300 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT