Question

As shown in the figure, an electron is fired with a speed of 3.59 × 106 m/s through a hole in one of the two parallel plates and into the region between the plates separated by a distance of 0.24 m

As shown in the figure, an electron is fired with a speed of 3.59 × 106 m/s through a hole in one of the two parallel plates and into the region between the plates separated by a distance of 0.24 m. There is a magnetic field in the region between the plates and, as shown, it is directed into the plane of the page (perpendicular to the velocity of the electron). Determine the magnitude of the magnetic field so that the electron just misses colliding with the opposite plate. 

image.png

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
As shown in the figure, an electron is fired with a speed of 3.59 × 106 m/s through a hole in one of the two parallel plates and into the region between the plates separated by a distance of 0.24 m
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • My Notes As shown in the figure, an electron is fired with a speed of 3.64...

    My Notes As shown in the figure, an electron is fired with a speed of 3.64 x 106 m/s through a hole in one of the two parallel plates and into the region between the plates separated by a distance of 0.19 m. There is a magnetic field in the region between the plates and, as shown, it is directed into the plane of the page (perpendicular to the velooty of the electron). Determine the magnitude of the magnetic field...

  • A proton with a speed of 2.20×106 m/s is shot into a region between two plates...

    A proton with a speed of 2.20×106 m/s is shot into a region between two plates that are separated by a distance of 0.185 m. As the drawing shows, a magnetic field exists between the plates, and it is perpendicular to the velocity of the proton. What must be the magnitude of the magnetic field (in T), so the proton just misses colliding with the opposite plate? what are the steps and formulas to acquire this answer?

  • As shown in the figure, an electron is fired with a speed of 3.73 x 10...

    As shown in the figure, an electron is fired with a speed of 3.73 x 10 m/s through a hole in one of the two parallel plates and into the region between the plates separated by a distance of 0.24 m. There is a magnetic field in the region between the plates and, as shown, it is directed into the plane of the page (perpendicular to the velocity of the electron). Determine the magnitude of the magnetic field so that...

  • An electron travels with speed 9.0×106 m/s between the two parallel charged plates shown in the...

    An electron travels with speed 9.0×106 m/s between the two parallel charged plates shown in the figure. The plates are separated by 1.0 cm and are charged by a 200 V battery. (Figure 1) What magnetic field strength will allow the electron to pass between the plates without being deflected?

  • An electron travels with speed 0.70×107m/s between the two parallel charged plates shown in the figure(Figure...

    An electron travels with speed 0.70×107m/s between the two parallel charged plates shown in the figure(Figure 1) . The plates are separated by 1.0 cm and are charged by a 200 V battery. What magnetic field strength will allow the electron to pass between the plates without being deflected?

  • An electron is trapped between two large parallel charged plates of a capacitive system. The plates...

    An electron is trapped between two large parallel charged plates of a capacitive system. The plates are separated by a distance of 1 cm and there is vacuum in the region between the plates. The electron is initially found midway between the plates with a kinetic energy of 14.9 eV and with its velocity directed toward the negative plate. Part A How close to the negative plate will the electron get if the potential difference between the plates is 100...

  • An electron is projected with an initial speed v0 = 4.80x106 m/s into the uniform field between the parallel plates in(Figure 1).

    An electron is projected with an initial speed v0 = 4.80x106 m/s into the uniform field between the parallel plates in(Figure 1). The direction of the field is vertically downward, and the field is zero except in the space between the two plates.  Part A If the electron just misses the upper plate as it emerges from the field, find the magnitude of the electric field.

  • A uniform electric field exists in a region between two oppositely charged parallel plates. An electron...

    A uniform electric field exists in a region between two oppositely charged parallel plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 2 cm distant from the first, in a time interval of 1.5x10 s. (a) Find the electric field , (b) find the velocity of the electron when it strikes the second plate.

  • An electron is fired at a speed  v0 = 5.3 ✕ 106 m/s and at an angle  θ0...

    An electron is fired at a speed  v0 = 5.3 ✕ 106 m/s and at an angle  θ0 = −45° between two parallel conducting plates that are  D = 2.5 mm apart, as in the figure below. The voltage difference between the plates is ΔV = 105 V. (a) Determine how close, d, the electron will get to the bottom plate.  mm (b) Determine where the electron will strike the top plate. mm Path of the electron 0

  • An electron is accelerated through a potential difference of 2.2 kV and directed into a region...

    An electron is accelerated through a potential difference of 2.2 kV and directed into a region between two parallel plates separated by 20 mm with a potential difference of120 V between them. The electron is moving perpendicular to the electric field when it enters the region between the plates. What magnetic field is necessary perpendicular to both the electron path and the electric field so that the electron travels in a straight line? T

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT