Question

A metal rod of length l = 19 cm moves at constant speed v on rails of negligible resistance that terminate in a resistor R = 0.2

A metal rod of length l = 19 cm moves at constant speed v on rails of negligible resistance that terminate in a resistor R = 0.2 ?, as shown in the figure above. A uniform and constant magnetic field B = 1 T ia normal to the plane of the rails. The induced current is I =1 A and flows in the direction shown. Find :


a) the speed v;
m/s

b) the external force needed to keep the rod moving at v.
N to the right.

2 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A metal rod of length l = 19 cm moves at constant speed v on rails of negligible resistance that terminate in a resistor R = 0.2
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • The conducting rod shown in the accompanying figure moves alongparallel metal rails that are 25-cm...

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 10 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25Ω. The rod moves at a constant speed of 5 m/s. Find:a) The current that flows through the resistanceb) The power supplied by the resistancec) The force...

  • Two parallel conducting rails with negligible resistance are connected at one end by a resistor of...

    Two parallel conducting rails with negligible resistance are connected at one end by a resistor of resistance R, as shown in the figure. The rails are placed in a magnetic field Bext, which is perpendicular to the plane of the rails. This magnetic field is uniform and time independent. The distance between the rails is f. A conducting rod slides without friction on top of the two rails at constant velocity v . Three-dimensional view ext ind Top view Bext...

  • A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B...

    A metal crossbar with resistance R lies across conducting rails in a constant magnetic field B pointing out of the page as shown. The bar is moving at a speed v as indicated to the right. The rails have negligible electrical resistance compared to the crossbar, and you may neglect friction in the sliding of the crossbar. (a) What is the direction of the induced current flowing in the crossbar? Explain your reasoning. (b) Systematically develop an expression for the...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • A conducting rod whose length is l = 30 cm is placed on a U-shaped metal wire that is connected to a light bulb having a resistance of 5.0 s as shown in the figure.

    A conducting rod whose length is l = 30 cm is placed on a U-shaped metal wire that is connected to a light bulb having a resistance of 5.0 s as shown in the figure. The wire and the rod are in the plane of the page. A constant uniform magnetic field of strength 0.50 T is applied perpendicular to and out of the paper. An external applied force moves the rod to the left with a constant speed of...

  • 1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right...

    1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right on metal rails as shown below. The rails have no friction and no electrical resistance. A uniform magnetic field of magnitude 4.00 T is directed into the paper. What is the magnitude of the force that an external agent would need to exert on the rod to keep it moving to the right at a speed of 10.0 m/s (in N)? (A) 20.0 (B)...

  • 1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right...

    1. A conducting rod of length 0.500 m and resistance 2.00 ohms moves to the right on metal rails as shown below. The rails have no friction and no electrical resistance. A uniform magnetic field of magnitude 4.00 T is directed into the paper. What is the magnitude of the force that an external agent would need to exert on the rod to keep it moving to the right at a speed of 10.0 m/s (in N)? (A) 20.0 (B)...

  • A rod moves with a speed of 2.1 m/s on rails 50cm apart in a magnetic...

    A rod moves with a speed of 2.1 m/s on rails 50cm apart in a magnetic field of .45T the whole circuit has a resistance of 20Ω. a.) how fast is the area changing as the rod moves? b.) the induced emf c.) the magnitude and direction of the current in the circuit? d.) the external force needed to keep the rod's velocity constant at that instant e.) find the power loss in the circuit at that instant c

  • please explain clearly why all answers are true Problem 6: A conducting rod with negligible resistance...

    please explain clearly why all answers are true Problem 6: A conducting rod with negligible resistance is pulled with constant velocity along conducting rails that also have negligible resistance. A uniform magnetic fleld shows A circuit is completed at one end of the rails with a resistor d 15 cm 00 m22 B-0.8 T V 10 m/s L 10 cm A What is the magnitude and direction of the electric current around the circuit? Explain in words why current flows...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT