Question

A 11.0 kg stone slides down a snow-covered hill, leaving point A with a speed of 12.0 m/s


Part A 

A 11.0 kg stone slides down a snow-covered hill, leaving point A with a speed of 12.0 m/s. There is no friction on the hill between points A and B but there is friction on the level ground at the bottom of the hill, between B and the wall. After entering the rough horizontal region, the stone travels 100 m and then runs into a very long light spring with force constant k = 250 Nm. The coefficients of kinetic and static friction between the stone and the level ground are 0.26 and 0.78. respectively. How will the stone compress the spring Enter its numerical value only. 


image.png

3 0
Add a comment Improve this question Transcribed image text
Answer #1

Please "LIKE" the answer if it is helpful for you.

If you have any doubt please ask in comment first before rate..

Add a comment
Know the answer?
Add Answer to:
A 11.0 kg stone slides down a snow-covered hill, leaving point A with a speed of 12.0 m/s
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 15.0 kg stone slides down a snow-covered hill, leaving point A at a speed of 10.0 m/s

    A 15.0 kg stone slides down a snow-covered hill, leaving point A at a speed of 10.0 m/s. There is no friction on the hill between points A and B, but there is friction on the level ground at the bottom of the hill, between B and the wall. After entering the rough horizontal region, the stone travels 100 m and then runs into a very long, light spring with force constant 2.0 N/m. The coefficients of kinetic friction between...

  • B4. A child in a sledge slides down a snow covered hill that is angled 45° below the horizontal. The coefficient of...

    B4. A child in a sledge slides down a snow covered hill that is angled 45° below the horizontal. The coefficient of friction between the sledge and the snow is μ : 1/V3. At time t .. the speed of the sledge is u m/s. (a) What is the acceleration of the sledge parallel to the hill? (b) Derive an expression for the distance the sledge has travelled down the hill at time t 0. (c) At time t 0,...

  • A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a...

    A 4.5 kg box slides down a 4.2-m -high frictionless hill, starting from rest, across a 2.2-m -wide horizontal surface, then hits a horizontal spring with spring constant 550 N/m . The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.2-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.22. Part C How far is the spring compressed? Express your answer...

  • After skiding down a snow-covered hill on an inner tube, Ashley is coasting across a level...

    After skiding down a snow-covered hill on an inner tube, Ashley is coasting across a level snowfield at a constant velocity of +2.3 m/s. Miranda runs after her at a velocity of +4.4 m/s and hops on the inner tube. How fast do the two of them slide across the snow together on the inner tube? Ashley's mass is 42 kg, and Miranda's is 67 kg. Ignore the mass of the inner tube and any friction between the inner tube...

  • A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide...

    A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-wide horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.25. (a) What is the speed of the box just before reaching the rough surface?...

  • 12. A 62 kg skier is moving at 6.5 m/s on frictionless horizontal snow-covered plateau when...

    12. A 62 kg skier is moving at 6.5 m/s on frictionless horizontal snow-covered plateau when she encounters a rough patch 3.50 m long. The coefficient of kinetic friction between this patch and her skis is 0.30. After crossing the rough patch and returning to friction free snow, she skis down an icy frictionless hell 2.5 m high. A) How much work is done by friction in crossing the patch? B) How fast is the skier moving when she gets...

  • A 62.0 kg skier is moving at 6.50 m/s on a frictionless, horizontal snow covered plateau when she encounters a rough patch 3.50 m long

    A 62.0 kg skier is moving at 6.50 m/s on a frictionless, horizontal snow covered plateau when she encounters a rough patch 3.50 m long. The coefficient of kinetic friction between this patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.50 m high. (a) How fast is the skier moving when she gets to the bottom of the hill? (b) How much internal energy was generated in crossing the rough patch?

  • Problem 11.56 A 4.5 kg box slides down a 4.3-m -high frictionless hill, starting from rest,...

    Problem 11.56 A 4.5 kg box slides down a 4.3-m -high frictionless hill, starting from rest, across a 1.7-m -wide horizontal surface, then hits a horizontal spring with spring constant 550 N/m The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 1.7-m-long horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.27. How far is the spring compressed? Express your answer to...

  • Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far i...

    Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far is the spring compressed? Express your answer using two significant figures The other end of the spring is anchored against a wall The ground under the spring is frictionless, but the 2.3-m- long horizontal surface is rough. The coefficient of kinetic friction of the box...

  • A 5-kg sled is sliding on a horizontal rough surface with a speed of 18 m/s....

    A 5-kg sled is sliding on a horizontal rough surface with a speed of 18 m/s. The coefficier kinetic friction between the block and surface is 0.15. After travelling 25-m, it encounters as covered hill (where friction can be ignored) and slides uphill. The hill makes an angle of 38。 horizontal. (a) How much work is done against friction during the 25-m horizontal travel? the maximum elevation on the hill the block reaches? (c) How much work is done against...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT