Question

Kinematics

A physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in the figure. The ball's position is shown at 1.0 s intervalsuntil t = 3.0 s. At t = 1.0 s, the ball's velocity has components vx = 2.0 m/s, vy = 2.0 m/s.

a. Determine the x- and y- components of the ball's velocity at t = 0.0 s, 2.0 s, and 3.0 s.

b. What is the value of g on Planet Exidor?

c. What was the ball's launch angle?

3 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #2

(a) Throughout the motion, the horizontal component of velocity remains constant. Thu:

\(\bar{v}=v_{x} \hat{i}+v_{j} \hat{j} v_{x}\) is constant

At \(t=1\) ss \(s\) st \(t\) \(\bar{v}=(2 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}\)

Thus \(v_{z}=2\) and \(v_{y}=2\) at \(t=1 \mathrm{~s}\)

When the ball reaches point \(2,\) it is at the maximum height However, at the maximum

At \(t=28\) ss \(s=2\) \(\bar{v}=2 \hat{i}+0 \hat{j}\)

$$ \begin{aligned} &=2 \hat{i} \\ v_{j} &=0 \text { at } t=2 . \end{aligned} $$

Let the \(y\) -component of velocity at \(t=0\) be \(v_{v}\), then we have \(v_{y}=v_{v y}+g t\)

Whent \(=1 \mathrm{~s}, v_{y}=2 \mathrm{~m} / \mathrm{s}\)

\(2 \mathrm{~m} / \mathrm{s}=v_{0 y}+g(1 \mathrm{~s})\)

\(v_{v_{y}}=(2 \mathrm{~m} / \mathrm{s})-g(1 \mathrm{~s}\)

\(41 \mathrm{so},\) when \(t=2 \mathrm{~s}, v_{y}=0\)

$$ 0=v_{0 y}+g(2 s) $$

\(v_{0 y}=-g(2 s)\)

\(g=\frac{-v_{0 y} y}{2 \mathrm{~s}}\)

Thus,

\(\frac{v_{0 y}}{2}=2 \mathrm{~m} / \mathrm{s}\)

\(v_{b y}=4 \mathrm{~m} / \mathrm{s}\)

\(t=0\)

$$ \bar{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{i}+(4 \mathrm{~m} / \mathrm{s}) \hat{j} $$

At \(t=3 \mathrm{~s} \mathrm{~s}=\mathrm{s}==3 \mathrm{~s}=\)

\(v_{y}=v_{0 y}+g(3 \mathrm{~s})\)

$$ \begin{array}{l} =v_{0 y}+\left(\frac{-v_{y_{y}}}{2 \mathrm{~s}}\right)(3 \mathrm{~s}) \\ =v_{0 y}-\frac{3 v_{\mathrm{og}}}{2} \\ =-\frac{v_{0 y}}{2} \end{array} $$

$$ =-\frac{(4 \mathrm{~m} / \mathrm{s}}{2} $$

\(t=3 s \quad \bar{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{i}+(-2 \mathrm{~m} / \mathrm{s}) \hat{j}\)

at \(t=0 \mathrm{~s} \quad \bar{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{i}+(4 \mathrm{~m} / \mathrm{s}) \hat{j}\)

\(\begin{array}{ll}\mathrm{at} t=2 \mathrm{~s} & \bar{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{i}\end{array}\)

\(\begin{array}{ll}\text { at } t=3 \mathrm{~s} & \bar{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{i}-(2 \mathrm{~m} / \mathrm{s}) \hat{j}\end{array} \hat{j}\)

(b) We have

\(=-\frac{(4 m / s)}{(2 s)}\)

$$ =-2 \mathrm{~m} / \mathrm{s}^{2} $$

The value of \(g\) on planet Exidor is \(g=2 \mathrm{~m} / \mathrm{s}\) downward

\((c)\) We have

\(\theta=\tan ^{-1}\left[\frac{4 \mathrm{~m} / \mathrm{s}}{2 \mathrm{~m} / \mathrm{s}}\right]\)

\(=\tan ^{-1}(2)\)

\(=63.43^{\circ}\)

answered by: Litatech
Add a comment
Answer #1
Solving vy(1) and vy(2) by substitution shows
that g = 2 m/s^2 on Exidor.

vy(1) = 2 = vy - g * 1
vy(2) = 0 = vy - g * 2
g = 2 m/s

Find initial value of vy
v(1) = vy - gt
2 = vy - 2(1)
vy = 4 m/s
vx = 2 m/s = constant

g = 2 m/s^2
V(t) = 2i + (4-gt)j
V(0) = 2i + 4j m/s ->initial velocity
launch angle: Arctan(y,x) = 63.435 degrees

V(1) = 2i + 2j m/s
V(2) = 2i + 0j m/s
V(3) = 2i - 2j m/s
answered by: tajzhane
Add a comment
Know the answer?
Add Answer to:
Kinematics
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT