Question

Two masses, a pulley, an inclined plane

Block 1, of mass = 0.550 , is connected over an ideal (massless and frictionless) pulley to block 2, of mass , as shown. Assume that the blocks accelerate as shownwith an acceleration of magnitude = 0.600 and that the coefficient of kinetic friction between block 2 and the plane is = 0.200.

What is the mass of the second block?
0 1
Add a comment Improve this question Transcribed image text
Answer #1


Given data:

m1 = 0.550 Kg

m2 = ?

Acceleration a = 0.600 m/s^2

Coefficient of kinetic friction μ = 0.200

Angle of inclination θ = 30 degrees

Equation of motion for m1

T = m1g - m1a ---------------------(1)

Equation of motion for m2

T = m2a + m2g sinθ + μm2g cosθ ---------------(2)

From (1) and (2)

m2 = m1(g-a)/[a + g sinθ + μ g cosθ]

= 5.06/7.197

= 0.7030 Kg

thereforethe mass of the second block is 0.7030 kg.


answered by: Soska
Add a comment
Know the answer?
Add Answer to:
Two masses, a pulley, an inclined plane
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass = 0.550 , is connected over an ideal (massless and frictionless) pulley to...

    Block 1, of mass = 0.550 , is connected over an ideal (massless and frictionless) pulley to block 2, of mass , as shown. Assume that the blocks accelerate as shownwith an acceleration of magnitude = 0.250 and that the coefficient of kinetic friction between block 2 and the plane is = 0.250.Find the mass of block 2, , when = 30.0.

  • Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg ,...

    Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.500m/s2 is observed for block 2. -Find the mass of block 2, m2.?

  • help

    Block 1, of mass = 0.650 , is connected over an ideal (massless and frictionless)pulley to block 2, ofmass , as shown. Assume that the blocks accelerate asshownwith an acceleration of magnitude = 0.500 and that thecoefficient of kinetic friction betweenblock 2 and the plane is = 0.350.Find the mass of block 2, , when = 30.0.

  • Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in...

    Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure. The mass of block 2 is ?2=11.7 kg , and the coefficient of kinetic friction between block 2 and the incline is ??=0.200 . The angle ? of the incline is 33.5° . If block 2 is moving up the incline at constant speed, what is the mass ?1 of block 1?

  • Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in...

    Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure. The mass of block 2 is ?2=11.3 kg , and the coefficient of kinetic friction between block 2 and the incline is ??=0.200 . The angle ? of the incline is 31.5° . If block 2 is moving up the incline at constant speed, what is the mass ?1 of block 1?

  • Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure.

    Two blocks are connected by a massless rope over a massless, frictionless pulley, as shown in the figure. The mass of block 2 is m2 = 10.5 kg, and the coefficient of kinetic friction between block 2 and the incline is μk = 0.200. The angle of the incline is 27.5°. If block 2 is moving up the incline at constant speed, what is the mass m1 of block 1? 

  • (Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2

    (Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2, as shown For an angle of θ =30.0° and a coefficient of kinetic friction between block 2 and the plane of a = 0.350, an acceleration of magnitude α = 0 200 m/s2 is observed for block 2.

  • University Physics Two blocks are connected over a massless, frictionless pulley as shown in the figure...

    University Physics Two blocks are connected over a massless, frictionless pulley as shown in the figure below. The mass of block 2 is 12.1 kg, and the coefficient of kinetic friction between block 2 and the incline is 0.200. The angle θ of the incline is 31.5. If block 2 is moving up the incline at constant speed, what is the mass of block 1? kg Friction Previous Give Up & View Solution Check AnswerNext Exit Hint

  • Two blocks are connected by a string that goes over an ideal pulley as shown in...

    Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block m1 has a mass of 2.02 kg and can slide over a rough plane inclined 27° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.389. Block B has a mass of 4.47 kg. What is the acceleration of the blocks?

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT