Question

A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.

A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.

A) Calculate its translational speed when it reaches the bottom.

B) Calculate its rotational speed when it reaches the bottom.      

C) What is the ratio of translational to rotational kinetic energy at the bottom?        

D) Avoid putting in numbers until the end so you can answer: do your answers in previous parts depend on the radius of the sphere or its mass?

 Only the angular speed depends on the radius. None of the results depend on the mass.

 Only the translational speed depends on the radius. None of the results depend on the mass. 

 The angular and the translational speeds depend on the radius and on the mass.

 The angular and the translational speeds depend on the radius. None of the results depend on the mass.



1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

A:

B:

C:

D:

(a)

Only the angular speed depends on the radius. None of the results depends on the mass.

Add a comment
Know the answer?
Add Answer to:
A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0? incline that is 10.0m long. Part A Calculate its translational speed when it reaches the bottom. v= Part B Calculate its rotational speed when it reaches the bottom. Express your answer using three significant figures and include the appropriate units. w = Part C What is the ratio of translational to rotational kinetic energy at the bottom?...

  • A sphere of radius r = 34.5 cm and mass m = 1.80 kg starts from...

    A sphere of radius r = 34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long. Part A Calculate its translational speed when it reaches the bottom. Express your answer using three significant figures and include the appropriate units. A Value Units Submit Request Answer Part B Part B Calculate its rotational speed when it reaches the bottom. Express your answer using three significant figures and...

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down...

    A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down a 35° incline that is 7.9 m long. Assume it started from rest. The moment of inertia of a sphere is given by I = 2/5MR2. (a) Calculate the linear speed of the sphere when it reaches the bottom of the incline. (b) Determine the angular speed of the sphere at the bottom of the incline.

  • A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow...

    A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow cube at the bottom that is only 1/5 its mass. If the incline is h tall and the table has a height of D from the floor, at what horizontal distance from the table do the two objects land? The cube/sphere combination leaves the incline moving horizontally.

  • A solid sphere of uniform density starts from rest and rolls without slipping a distance of...

    A solid sphere of uniform density starts from rest and rolls without slipping a distance of d = 2 m down a θ = 20° incline. The sphere has a mass  M = 5.8 kg and a radius R = 0.28 m. 1. Of the total kinetic energy of the sphere, what fraction is translational? KE tran/KEtotal 2)What is the translational kinetic energy of the sphere when it reaches the bottom of the incline? KE tran = 3. What is the...

  • A 305-N solid sphere of radius 0.4 m is released from rest and rolls without slipping...

    A 305-N solid sphere of radius 0.4 m is released from rest and rolls without slipping from the top to the bottom of a ramp of length 5 m that is inclined at an angle of 25 degrees with the horizontal as shown in the figure below. a. What type(s) of energy does the object have when it is released? Gravitational Potential Energy (GPE) Rotational Kinetic Energy (KE) Translational Kinetic Energy (KE) Both KE and KE, GPE, KE, and KE,...

  • A hollow sphere of 2.307 kg mass is rolling down an incline without slipping. It starts...

    A hollow sphere of 2.307 kg mass is rolling down an incline without slipping. It starts from rest at a vertical height of 50 cm above the bottom. The sphere has a radius of 10 cm. What is the translational speed of the sphere, in m/s, at the bottom? The moment of inertia of a hollow sphere is 2/3mr^2. A. 0.85 B. 1 C. 2.2 D. 2.4 E. 2.6

  • A solid sphere rolls in released from rest and rolls down an incline plane, which is...

    A solid sphere rolls in released from rest and rolls down an incline plane, which is 2.0 m long and inclined at a 30° angle from the horizontal. (a) Find its speed at the bottom of the incline. (Remember that the kinetic energy in rolling motion is the translational kinetic energy ½ Mv2 of the center, plus the rotational K.E. ½ Iω2 about the center. Also remember that v = ωr if the sphere rolls without slipping.) (b) Find the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT