Question

Three capacitors having capacitances of 8.0 µF, 8.6 µF, and 4.1 µF are connected in series...

Three capacitors having capacitances of 8.0 µF, 8.6 µF, and 4.1 µF are connected in series across a 36-V potential difference.

(A) What is the charge on the 4.1μF capacitor? ( Express your answer using two significant figures )

i tried to find it and my answers was : ( 7.5*10^2 ) , ( 745 ) , ( 17 ) , ( 74 ) , ( 74.2 ) all are wrong :(

(B) What is the total energy stored in all three capacitors? (Express your answer using two significant figures)

(C) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel combination? (Express your answer using two significant figures)

(D) What is the total energy now stored in the capacitors? (Express your answer using two significant figures)

Thanks alot !

0 0
Add a comment Improve this question Transcribed image text
Answer #1

eg =2(20.7×10° )(10.75)2 = 1.196×10-3 J

Add a comment
Know the answer?
Add Answer to:
Three capacitors having capacitances of 8.0 µF, 8.6 µF, and 4.1 µF are connected in series...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference.

    Three capacitors having capacitances of 8.3 μF, 8.9 μF and 4.9 μF are connected in series across a 36 V potential difference. Part A What is the charge on the 4.9 μF capacitor? Part B What is the total energy stored in all three capacitors?Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are the reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor...

  • Problem 24.61 (C) 6orta Three capacitors having capacitances of 85F 81 and 45 F are connected...

    Problem 24.61 (C) 6orta Three capacitors having capacitances of 85F 81 and 45 F are connected in series across a 31-V potential difference Constants The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel combination? Express your answer using two significant figures. Pal AΣΦ c 2 221 X10 VE V Submit...

  • Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.

    Three capacitors having capacitances of 9.0 μF, 8.7 μF. and 5.0 μF are connected in series across a 32- V potential difference.Part A What is the charge on the 5.0 μF capacitor? Part B What is the total energy stored in all three capacitors? Part C The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel...

  • Two capacitors, C1 = 27.0 µF and C2 = 30.0 µF, are connected in series, and...

    Two capacitors, C1 = 27.0 µF and C2 = 30.0 µF, are connected in series, and a 15.0-V battery is connected across the two capacitors. (a) Find the equivalent capacitance. µF (b) Find the energy stored in this equivalent capacitance. J (c) Find the energy stored in each individual capacitor. capacitor 1     J capacitor 2     J (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always...

  • Two capacitors, one that has a capacitance of 4 µF and one that has a capacitance...

    Two capacitors, one that has a capacitance of 4 µF and one that has a capacitance of 12 µF are first discharged and then are connected in series. The series combination is then connected across the terminals of a 14-V battery. Next, they are carefully disconnected so that they are not discharged and they are then reconnected to each other--positive plate to positive plate and negative plate to negative plate. (a) Find the potential difference across each capacitor after they...

  • Three capacitors having capacitances of 8.5 μF, 8.1 μF, and 4.5 μF are connected in series...

    Three capacitors having capacitances of 8.5 μF, 8.1 μF, and 4.5 μF are connected in series across a 31 V potential difference. A. what is the charge on the 4.5 μF capacitor? B. What is the total energy stored in all three capacitors?

  • A 1.6 µF capacitor and a 4.9 µF capacitor are connected in parallel across a 450...

    A 1.6 µF capacitor and a 4.9 µF capacitor are connected in parallel across a 450 V potential difference. Calculate the total energy in joules stored in the capacitors.

  • Capacitors of 5.00 µF, 10.0 µF, and 50.0 µF are connected in series across a 12.0-V...

    Capacitors of 5.00 µF, 10.0 µF, and 50.0 µF are connected in series across a 12.0-V battery. What is the potential difference across the 10.0-µF capacitor?

  • Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and...

    Two capacitors, C1 = 16.0 μF and C2 = 32.0 μF, are connected in series, and a 24.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor equivalent capacitance total energy stored (b) Find the energy stored in each individual capacitor. energy stored in C energy stored in C2 Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always...

  • Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and...

    Two capacitors, C1 = 19.0 μF and C2 = 38.0 μF, are connected in series, and a 21.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance     μF total energy stored     J (b) Find the energy stored in each individual capacitor. energy stored in C1     J energy stored in C2     J Show that the sum of these two energies is the same as the energy found in part (a)....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT