Question

Learning Goal: To understand the dynamics ofaseries R-C circuit.Consider a series circuit containing a...

Learning Goal: To understand the dynamics of aseries R-C circuit.

Consider a series circuit containing a resistor of resistance R anda capacitor of capacitance C connected to a source ofEMF ε with negligible internal resistance. The wiresare also assumed to have zero resistance. Initially, the switch isopen and the capacitor discharged.

Let us try to understand the processes that take place afterthe switch is closed. The charge of the capacitor, the current inthe circuit, and, correspondingly, the voltages across the resistorand the capacitor will be changing. Note that at any moment in timeduring the life of our circuit, Kirchhoff's loop rule holds and,indeed, it is helpful: ε-VR -VC =0,where VR is the voltage across the resistor andVCis the voltage across the capacitor.


a)

In the steady state, what is thecharge q of the capacitor?

Express your answer in terms of anyor all of ε, R, and C.

B)

How much work W is done by the voltage sourceby the time the steady state is reached?

Express your answer in terms of anyor all of ε, R, and C.

0 0
Add a comment Improve this question Transcribed image text
Answer #1
a)
q = Cε

b)
W= Cε^2
Add a comment
Know the answer?
Add Answer to:
Learning Goal: To understand the dynamics ofaseries R-C circuit.Consider a series circuit containing a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Learning Goal: To understand the dynamics of a series R-C circuit. Consider a series circuit containing...

    Learning Goal: To understand the dynamics of a series R-C circuit. Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF ε with negligible internal resistance. The wires are also assumed to have zero resistance. Initially, the switch is open and the capacitor discharged. (Figure 1)Let us try to understand the processes that take place after the switch is closed. The charge of the capacitor, the current in...

  • To understand the dynamics of a seriesR-C circuit.Consider a series circuitcontaining a resistor...

    To understand the dynamics of a series R-C circuit.Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance Cconnected to a source of EMF E with negligible internal resistance. The wires are also assumed to have zero resistance. Initially, the switch is open and the capacitor discharged. (Figure 1)Let us try to understand the processes that take place after the switch is closed. The charge of the capacitor, the current in the circuit, and, correspondingly,...

  • Part A Learning Goal To understand the dynamics of a series R-C circuit. Immediately after the...

    Part A Learning Goal To understand the dynamics of a series R-C circuit. Immediately after the switch is closed, what is the voltage across the capacitor? Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF with negligible internal resistance. The wires are also assumed to have zero resistance. Initially, the switch is open and the capacitor discharged. (Figure 1) zero Let us try to understand the processes...

  • Learning Goal: To understand the behavior of the current andvoltage in a simple R-C circuit...

    Learning Goal: To understand the behavior of the current and voltage in a simple R-C circuit A capacitor with capacitance C is initially charged with charge q0. At time t=0 a resistor with resistance R is connected across the capacitor. (Figure 1)Part AUse the Kirchhoff loop rule and Ohm's law to express the voltage across the capacitor V(t) in terms of the currentI(t) flowing through the circuit.Express your answer in terms of I(t) andR.V(t) =

  • Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF E with negligible internal resistance.

    Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF E with negligible internal resistance. The wires are also assumed to have zero resistance. Initially, the switch is open and the capacitor discharged. (Figure 1)A Immediately after the switch is closed, what is the voltage across the capacitor?B Complete previous part(s) C Immediately after the switch is closed, what is the direction of the current in the circuit? E Eventually,...

  • Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF ε with negligible internal resistance.

     Consider a series circuit containing a resistor of resistance R and a capacitor of capacitance C connected to a source of EMF ε with negligible internal resistance. The wires are also assumed to have zero resistance. Initially, the switch is open and the capacitor discharged. (Figure 1)Immediately after the switch is closed, what is the voltage across the resistor?Immediately after the switch is closed, what is the direction of the current in the circuit?

  • A series L-R-C circuit is driven with AC voltage of amplitude Vin and frequency ω. Define...

    A series L-R-C circuit is driven with AC voltage of amplitude Vin and frequency ω. Define Vout to be the amplitude of the voltage across the capacitor. The resistance of the resistor is R, the capacitance of the capacitor is C, and the inductance of the inductor is L.(Figure 1) What is the ratio VoutVin? Express your answer in terms of either R, ω, L, and C or R, XL =ωL, and XC =1ωC. Vin c+ Vout

  • In the adjoining circuit schematic, in steady-state, the current flowing through the loop causes a voltage...

    In the adjoining circuit schematic, in steady-state, the current flowing through the loop causes a voltage drop across the resistor, having the waveform vR(t) = 15 cos (75 t) and a voltage drop across the capacitor given by vC(t) = 20 cos (75 t + 90⁰) (a) Express the above two voltages in phasor form. (b) Find the source voltage shown in the circuit schematic, expressed in phasor form. (c) Express the source voltage v(t) as a function of time....

  • Learning Goal: To understand the use of phasor diagrams in calculating the impedance and resonance conditions in a seri...

    Learning Goal: To understand the use of phasor diagrams in calculating the impedance and resonance conditions in a series L-R-C circuit. At resonance, XL = Xc. The voltage across the capacitor exactly cancels that across the i have the same amplitude. Thus, the inductor and capacitor effectively cancel out in the formu not come as a surprise that the resonant frequency equals the natural frequency of the oscilla In this problem, you will consider a series L-R-C circuit, containing a...

  • A Review | Constants An L – R-C series circuit has voltage amplitudes Vư = 180...

    A Review | Constants An L – R-C series circuit has voltage amplitudes Vư = 180 V, Vc = 120 V, and VR = 160 V. At time t the instantaneous voltage across the inductor is 80.0 V. Part A At this instant, what is the voltage across the capacitor? Express your answer with the appropriate units. ? Å Value * o Units VC= Submit Request Answer Part B At this instant, what is the voltage across the resistor? Express...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT