Question

A particle's position ?⃗ as a function of time ? is given by ?⃗ (?)=??^3?̂ +(??−??4)?̂...

A particle's position ?⃗ as a function of time ? is given by ?⃗ (?)=??^3?̂ +(??−??4)?̂ . where a=5.00 m/s^3, b=3.00 m/s, and c=6.00 m/s^4. At t=2.45 s find:

(e)The x-component of velocity.

(f)The y-component of velocity.

(g)The magnitude of the velocity vector.

(h)The direction of the velocity vector. Your answer for this part should be in the range of -180 to 180 degrees.

(i)The x-component of the acceleration.

(j)The y-component of the acceleration.

(k)The magnitude of the acceleration vector.

(l)The direction of the acceleration vector. Your answer for this part should be in the range of -180 to 180 degrees.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A particle's position ?⃗ as a function of time ? is given by ?⃗ (?)=??^3?̂ +(??−??4)?̂...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector...

    Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector (ct2 - 2dt3i(3ct2 - di3)j, where c and d are positive constants. Find the expression for the x- component of the velocity (for time t> 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. D (2ct-6dt 2) First find the velocity vector and use this to determine the times when the...

  • Velocity in xy-Plane Part A particle's position in the xy- plane is given by the vector...

    Velocity in xy-Plane Part A particle's position in the xy- plane is given by the vector (er-2d+(e-d where c and d are positive constants. Find the expression for the x component of the velocity (for met 0) when the pertide is roving the r-direction. You should express your answer in terms of the variables c endd. First find the velocity vector and use this to determine the times when the particle is traveling in the x or y directions. Tries...

  • Part A: A particle's position in the xy plane is given by the vector r= (ct^2-3dt^3)i...

    Part A: A particle's position in the xy plane is given by the vector r= (ct^2-3dt^3)i + (2ct^2-dt^3)j where c and d are positive constants. Find the expression for the velocity (for time t > 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. Part B: Find the expression for velocity (for time t > 0) when the particle is moving in the y direction. Part A...

  • t (s) Figure 4-31 gives the angle 8 of the particle's direction of travel as a...

    t (s) Figure 4-31 gives the angle 8 of the particle's direction of travel as a function of t (θ is measured from the positive x direction). What are (a) e and (b) f, including units? Figure 4-31 Problem 10 t Module 4-3 Average Acceleration and Instantaneous Acceleration 11 G The position of a particle moving in an xy plane is given by → = (2.00N-5.00)i + (6.00-7.00rjj , with r in meters and t in seconds. In unit-vector notation,...

  • The position T of a particle moving in an xy plane is given by (3.006.00(3.00 1.00r...

    The position T of a particle moving in an xy plane is given by (3.006.00(3.00 1.00r with in meters and t in seconds. In unit-vector notation, calculate (a) r, (b) v, and (c) a fort 3.00 s. (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at t- 3.00 s? Give your answer in the range of (-180°; 180°) (a) Number (b) Number (c) Number (d) Number j...

  • (8c4095) A partide travels with constant speed on a circle o radi s r 5.0 m see the gure and c mple es one revol tion n 20 0·The particle passes through 0 at t of the following vectors. With respec...

    (8c4095) A partide travels with constant speed on a circle o radi s r 5.0 m see the gure and c mple es one revol tion n 20 0·The particle passes through 0 at t of the following vectors. With respect to 0, find the particle's position vector at t-5.0 s. What is it magnitude? 7.07 m o Fi d the magnitude and direction each You are correct. receipt no. is 161-3332 Previous Tries A par ce p tra els...

  • Show how you solved Velocity in xy-Plane Part A A particle's position in the xy-plane is...

    Show how you solved Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector r (ct2-5dt3)计(2ct2-de)j, where c and d are positive constants. Find the expression for the velocity (for time t> 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. Submit Answer Tries o/6 Part B Find the expression for velocity (for time t > 0) when the particle is...

  • Constants |Periodic Table The position of a particular particle as a function of time is given...

    Constants |Periodic Table The position of a particular particle as a function of time is given by T (9.60ti + 8.85j-1.00t k)m, where t is in seconds. PartA Determine the particle's velocity as a function of time. Express your answer in terms of the unit vectors i, j, and k. m/s u= Submit Request Answer Part B Determine the particle's acceleration as a function of time Express your answer in terms of the unit vectors i, j, and k. Submit...

  • A particle P travels with constant speed on a circle of radius r = 2.40 m...

    A particle P travels with constant speed on a circle of radius r = 2.40 m (see the figure) and completes one revolution in 20.0 s. The particle passes through O at time t = 0. At t = 5.00 s, what is the particle's position vector? Give (a) magnitude and (b) direction (as an angle relative to the positive direction of x. At t = 7.50 s, what is the particle's position vector? Give (c) magnitude and (d) direction...

  • The vector position of a particle varies in time according to the expression r = 8.20...

    The vector position of a particle varies in time according to the expression r = 8.20 i-5.60p j where r is in meters and t is in seconds. (a) Find an expression for the velocity of the particle as a function of time. (Use any variable or symbol stated above as necessary.) x m/s Determine the acceleration of the particle as a function of time. (Use any variable or symbol stated above as necessary.) X m/s2 (c) Calculate the particle's...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT