Question

Velocity in xy-Plane Part A particles position in the xy- plane is given by the vector (er-2d+(e-d where c and d are positive constants. Find the expression for the x component of the velocity (for met 0) when the pertide is roving the r-direction. You should express your answer in terms of the variables c endd. First find the velocity vector and use this to determine the times when the particle is traveling in the x or y directions. Tries 1/6 Previous Tries Part B Find the expression for the y-component of the velocity(for time>0) when the particle is moving in the y-direction.C Submi Anawer Tries y
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solving the problem using the basic definition of velocity .

9:Yen componen t of ð-componentイ So we can uwmt,and dr- small chang e in poshn dt ν- Smal chanq n fimeve n scen and, the veio 나이 of the Partrue can be Tepresenttd ai dt dt dle or So) え二 dtχ component of veloGh US 2 of Yelou along t Similorlu . alonq J

And an important note to be added further is that the image uploaded wasn't very clear.

Add a comment
Know the answer?
Add Answer to:
Velocity in xy-Plane Part A particle's position in the xy- plane is given by the vector...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector...

    Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector (ct2 - 2dt3i(3ct2 - di3)j, where c and d are positive constants. Find the expression for the x- component of the velocity (for time t> 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. D (2ct-6dt 2) First find the velocity vector and use this to determine the times when the...

  • Show how you solved Velocity in xy-Plane Part A A particle's position in the xy-plane is...

    Show how you solved Velocity in xy-Plane Part A A particle's position in the xy-plane is given by the vector r (ct2-5dt3)计(2ct2-de)j, where c and d are positive constants. Find the expression for the velocity (for time t> 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. Submit Answer Tries o/6 Part B Find the expression for velocity (for time t > 0) when the particle is...

  • Part A: A particle's position in the xy plane is given by the vector r= (ct^2-3dt^3)i...

    Part A: A particle's position in the xy plane is given by the vector r= (ct^2-3dt^3)i + (2ct^2-dt^3)j where c and d are positive constants. Find the expression for the velocity (for time t > 0) when the particle is moving in the x-direction. You should express your answer in terms of the variables c and d. Part B: Find the expression for velocity (for time t > 0) when the particle is moving in the y direction. Part A...

  • Velocity in xy-Plane position in the xy plane is given by the vector (ct 4dtt)i +(2ct?...

    Velocity in xy-Plane position in the xy plane is given by the vector (ct 4dtt)i +(2ct? -d')j, where c and d are positive c FInd the expression for the x-component of the velocity (for time t > 0) when the in the z-direction. You should express your answer in terms of the variables c and d. Find the n for the y component of the velocity (for timet 0) when the particle is moving in the y-direction. D

  • Main 2 s and 2D Motion Velocity in xy-Plane о» e xy plane is given by...

    Main 2 s and 2D Motion Velocity in xy-Plane о» e xy plane is given by the vector r-(cts_ 4dt*)i + (2ct2 dt3) erms of the variables c and d C j, where c and d are positive constants. Find t of the velocity (for time t > 0) when the particle is moving in the z-direction. You should express your answer in t vector and use this to d Tries 1/

  • At t = 0, a particle moving in the xy plane with constant acceleration has a...

    At t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vector v i = (3.00 i - 2.00 j) m/s and is at the origin. At t = 3.60 s, the particle's velocity is vector v = (8.90 i + 7.70 j) m/s. (Use the following as necessary: t. Round your coefficients to two decimal places.) (a) Find the acceleration of the particle at any time t. vector a = m/s2 (b)...

  • At t = 0, a particle moving in the xy plane with constant acceleration has a...

    At t = 0, a particle moving in the xy plane with constant acceleration has a velocity of vector v i = (3.00 i - 2.00 j) m/s and is at the origin. At t = 3.70 s, the particle's velocity is vector v = (7.40 i + 6.90 j) m/s. (Use the following as necessary: t. Round your coefficients to two decimal places.) (a) Find the acceleration of the particle at any time t. vector a = m/s2 (b)...

  • Acceleration, Velocity, and Displacement Vector Part A A particle moves in the zy plane with constant...

    Acceleration, Velocity, and Displacement Vector Part A A particle moves in the zy plane with constant acceleration. At time t o а 8.9 m s2z + 8.8 m 82 y. The velocity vector at time t 0 s is-8.9 m/s z s, the position vector for the particle is # 3.40m +1.80m g. The acceleration is given by the vector 9.20 s 2.4 m sy. Find the magnitude of the velocity vector at time t Submit Answer Unable to interpret...

  • A particle's position ?⃗ as a function of time ? is given by ?⃗ (?)=??^3?̂ +(??−??4)?̂...

    A particle's position ?⃗ as a function of time ? is given by ?⃗ (?)=??^3?̂ +(??−??4)?̂ . where a=5.00 m/s^3, b=3.00 m/s, and c=6.00 m/s^4. At t=2.45 s find: (e)The x-component of velocity. (f)The y-component of velocity. (g)The magnitude of the velocity vector. (h)The direction of the velocity vector. Your answer for this part should be in the range of -180 to 180 degrees. (i)The x-component of the acceleration. (j)The y-component of the acceleration. (k)The magnitude of the acceleration vector....

  • The position ModifyingAbove r With right-arrow of a particle moving in an xy plane is given...

    The position ModifyingAbove r With right-arrow of a particle moving in an xy plane is given by ModifyingAbove r With right-arrow equals left-parenthesis 4 t cubed minus 3 t right-parenthesis ModifyingAbove i With caret plus left-parenthesis 6 minus 2 t Superscript 4 Baseline right-parenthesis ModifyingAbove j With caret with ModifyingAbove r With right-arrow in meters and t in seconds. In unit-vector notation, calculate (a)ModifyingAbove r With right-arrow, (b)v Overscript right-arrow EndScripts, and (c)a Overscript right-arrow EndScripts for t = 2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT