Question

80. The sun is a sphere with a radius of 6.96 X 10a m and an av- erage surface temperature of 5800 K. Determine the amount by which the suns thermal radiation increases the entropy of the entire universe each second. Assume that the sun is a perfect blackbody, and that the average temperature of the rest of the universe is 2.73 K. Do not con- sider the thermal radiation absorbed by the sun from the rest of the universe.
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
80. The sun is a sphere with a radius of 6.96 X 10a m and an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. The "surface" of the Sun is not sharp boundaries like the surface of the Earth....

    1. The "surface" of the Sun is not sharp boundaries like the surface of the Earth. Most of the radiation that the Sun emits is in thermal equilibrium with the hot gases that make up the Sun's outer layers. Without too much error, we can treat sunlight as blackbody radiation. The total power radiated by the Sun is 3.87×1026W. Given the radius of the Sun is 6.96×108m, what is the surface temperature of the Sun? Suppose the temperature of the...

  • The amount of radiant power produced by the sun is approximately 3.9 × 1026 W. Assuming...

    The amount of radiant power produced by the sun is approximately 3.9 × 1026 W. Assuming the sun to be a perfect blackbody sphere with a radius of 6.96 × 108 m, find its surface temperature (in kelvins).

  • Use the following information for the next three questions: The sun has a radius of 695,700...

    Use the following information for the next three questions: The sun has a radius of 695,700 km and emits blackbody radiation at a temperature of 5778 K.   Assuming that all of the sun's radiation is emitted at the peak wavelength, find the number of photons emitted by the sun per second.    9.7 x 1014    9.7 x 1024       9.7 x 1044

  • P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is...

    P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is generating heat at a constant rate in W/m] inside another sphere of radius ry. The radius of the internal sphere is a 10 cm and the radius of the outer sphere is 40 cm. The outer surface is exposed to ambient air at 27°C and a convection coethicient -30 W/m-K. The thermal conductivity of the external sphere is 6.0 W/m-K. If the temperature at...

  • RACTICE IT se the worked example above to help you solve this problem. Assume that the...

    RACTICE IT se the worked example above to help you solve this problem. Assume that the Sun delivers an average power per unit area of about 1000 W/m2 to Earth's surface. (a) Calculate the total power incident on a flat tin roof 7.66 m by 23.4 m. Assume that the radiation is incident nomal (perpendicular) to the roof 179244 (b) The tin roof reflects some light, and convection, conduction and radiation transport the rest of the thermal energy away, until...

  • Q2 (a) A 12 mm diameter mild steel sphere (k = 42.5 W/m K) is exposed...

    Q2 (a) A 12 mm diameter mild steel sphere (k = 42.5 W/m K) is exposed to cooling airflow at 27 "C resulting in the convective coefficient, h = 114 W/m' K. The relevant properties of mild steel are given as follows: Density p= 7850 kg/m . Specific heat c = 475 J/kg K and thermal diffusivity a = 0.043 m/hr Determine: (i) Time required to cool the sphere (lumped parameter system) from 540 °C to 95°C. [7 marks] (ii)...

  • Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C...

    Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C and 100°C, respectively. Determine the rate of heal transfer by radiation between the plates in Wim and the radiative heat transfer coefficient in W/m K ) 12 Write down the one-dimensional sent heal conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each variable represents 13 Write down the one-dimensional transient heat conduction...

  • Please use the formulate sheet and show all steps to make sure the question is worth...

    Please use the formulate sheet and show all steps to make sure the question is worth any points a) The initial ratio of deuterium (D) to hydrogen (H) in a planet's atmosphere was 175000; however, the present ratio is 1/1500 and the initial and final abundances of D are 5 x 10° atoms per m3 and 9 x 106 atoms per m2, respectively. What fraction of deuterium has been lost, and what fraction of hydrogen has been lost in this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT