Question

P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is generating heat at a constant rate in W/m] insi
0 0
Add a comment Improve this question Transcribed image text
Answer #1


solution: We know thermal sosistance for spherical body, Rth= 12-1 4k7172 so thermal resistance of outer sphere, Rtho=0,40-0.

Add a comment
Know the answer?
Add Answer to:
P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p -...

    A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p - 7614 kg/m3, specific heat c 418 J/(kgK) is initially at a uniform temperature of Ti-74°C. The cylinder is suddenly exposed to a gas at T,-18 ℃ The convection coefficient is h -17 W/(m2K). Verify that a lumped capacitance analysis can be used for the transient response of the cylinder temperature. What is the time t in seconds for the cylinder temperature to become Tf-32...

  • 2-157 A long electrical resistance wire of radius r.-0.25 cm has a thermal conductivity kwire-15 W/m-K. Heat is gene...

    2-157 A long electrical resistance wire of radius r.-0.25 cm has a thermal conductivity kwire-15 W/m-K. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of 0.5 W/cm3. The wire is covered with polyethylene insulation with a thickness of 0.25 cm and thermal conductivity of ks 0.4 W/m K. The outer surface of the insulation is subjected to free convection in air at 20°C and a convection heat transfer coefficient of 2...

  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • pts.) Consider a long resistance wire of radius ri-1.5 cm and thermal conductivity m'к in which...

    pts.) Consider a long resistance wire of radius ri-1.5 cm and thermal conductivity m'к in which heat is generated uniformly as a result of resistance heating at a e wire is embedded in a 1.0-cm-thick layer of ceramic whose thermal bTeam. W/m K. If the outer surface temperature of the ceramic layer is nstant rate. The nductivity is keramic-1.5 to be T,-45°C and the maximum temperature at the center is 375°C. Determine the ar generated per unit volume in (W/em)...

  • The upper surface of a 60-cm-thick solid plate (k = 237 W/m.K) is being cooled by...

    The upper surface of a 60-cm-thick solid plate (k = 237 W/m.K) is being cooled by water with temperature of 20°C. The upper and lower surfaces of the solid plate maintained at constant temperatures of 60°C and 120°C, respectively. Given: The thermal conductivity of the solid plate is given as k = 237 W/ mK. (T..+) The thermal conductivity of water at the film temperature of T, = =(60°C + 20°C)/2 = 40°C is kfluid = 0.631 W/mK. 1. value...

  • A plane wall is composed of two materials. Material A has a uniform heat generation of...

    A plane wall is composed of two materials. Material A has a uniform heat generation of 100 kW/m3, a thermal conductivity of 50 W/mK, and a thickness of 10 cm. The inner surface of material A is well insulated. The other surface of material A is connected to Material B which has no generation with a thermal conductivity of 100 W/mK and a thickness of 20 cm. The outer surface of material B is cooled by ambient air at 300...

  • A plane wall with thermal conductivity of k, is insulated on one side and is exposed...

    A plane wall with thermal conductivity of k, is insulated on one side and is exposed to ambient air at To and convection coefficient of h, on the other side. A heat source in the 3) wall is generating a uniform heat rate per unit volume of For one-dimensional steady-state conduction in the wall, derive a proper differential equation for the temperature by either using the heat equations or doing the energy balance. Identify proper boundary conditions and find the...

  • A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.

    A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT