Question

A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generatio
0 0
Add a comment Improve this question Transcribed image text
Answer #1

To TO h = 25 W/m²K ४। Too = aree 12 ki = 0.5 w/mk or, = 0.05 m gr = 5x104 W/m3 Kg = 4 W/mk 8 = 0.2m lan Rate of heat transfer(b) Inside cylindes AR? TOV) : 4K, (1-0) + T. Put rzo Tlo) duri? 4 ki + T, (R Riar) 5x10 4 x 0.05² 2 Tlo) = + 61.16 4 x 0.5 7

Add a comment
Know the answer?
Add Answer to:
A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

  • G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 7...

    G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 70 mm are attached to the wall with surface temperature o C. The fin is made of material with thermal conductivity of 210 W/mk, and exposed to an ambient air condition of 24 °C and the convection heat transfer coefficient of 190 W/m2k. f 300 1- Plot the temperature variation for the following boundary conditions a- Infinitely long fin b- Adiabatic fin tip c-...

  • A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform...

    A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces  (x=-L, +L), each of which is exposed to a fluid of temperature ∞T∞= 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+b⁢x+c⁢x2 where a= 82.0°C, b= -210°C/m, c= -2 × 104°C/m2, and x is in meters. The origin of the x-coordinate...

  • P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is...

    P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is generating heat at a constant rate in W/m] inside another sphere of radius ry. The radius of the internal sphere is a 10 cm and the radius of the outer sphere is 40 cm. The outer surface is exposed to ambient air at 27°C and a convection coethicient -30 W/m-K. The thermal conductivity of the external sphere is 6.0 W/m-K. If the temperature at...

  • A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p -...

    A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p - 7614 kg/m3, specific heat c 418 J/(kgK) is initially at a uniform temperature of Ti-74°C. The cylinder is suddenly exposed to a gas at T,-18 ℃ The convection coefficient is h -17 W/(m2K). Verify that a lumped capacitance analysis can be used for the transient response of the cylinder temperature. What is the time t in seconds for the cylinder temperature to become Tf-32...

  • A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.

    A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...

  • Problem 3-2 A brass rod 100 mrn long and 5 mm in diameter extends horizontally from...

    Problem 3-2 A brass rod 100 mrn long and 5 mm in diameter extends horizontally from a casting at 203°C. The rod is in an air environment with T-25°C and h- 30 W/m2K. Determine the temperature of the rod 75 and 100 mm from the casting. The thermal conductivity of brass is 133 W/mK

  • Please help me with this problem 2. A composite cylinder is formed by a long cylindrical...

    Please help me with this problem 2. A composite cylinder is formed by a long cylindrical rod (A) and two concentric cylinders (tubes B and C). Tube B encloses trod A and its inner and outer radii are 20 mm and 40 mm, respectively. Tube C encloses tube B and its outer radius is 50 mm. A thin electrical heater is inserted between rod A and tube B. The rod (A) has a thermal conductivity of 2.5 w/m K, while...

  • Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k =...

    Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m.K experiences uniform volumetric heat generation at a rate ġ, while convection heat transfer occurs at both of its surfaces (x = -1, + L), each of which is exposed to a fluid of temperature Too = 20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx? where a = 82.0°C,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT