Question

A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p - 7614 kg/m3, specific heat c 418 J/(kgK) is initially at a uniform temperature of Ti-74°C. The cylinder is suddenly exposed to a gas at T,-18 ℃ The convection coefficient is h -17 W/(m2K). Verify that a lumped capacitance analysis can be used for the transient response of the cylinder temperature. What is the time t in seconds for the cylinder temperature to become Tf-32 °C? 0 Too , h

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A long cylinder of diameter D 0.012 m, thermal conductivity k 358 W/(mK), density p -...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is...

    P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is generating heat at a constant rate in W/m] inside another sphere of radius ry. The radius of the internal sphere is a 10 cm and the radius of the outer sphere is 40 cm. The outer surface is exposed to ambient air at 27°C and a convection coethicient -30 W/m-K. The thermal conductivity of the external sphere is 6.0 W/m-K. If the temperature at...

  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

  • Problem 2. A long 6.5 cm diameter solid cylinder steel (K 16.3 W/m. K,p 7817 kg/m3,...

    Problem 2. A long 6.5 cm diameter solid cylinder steel (K 16.3 W/m. K,p 7817 kg/m3, Cp 460 J/kg.k). It's initially at a uniform temperature of T 150°C. It is suddenly exposed to a convection environment with h-285 W/m2 K and Too 50°C. Calculate the temperature at 1.) the axis of the cylinder, and 2.) a 2.5 cm radial distance after 5 min of exposure to the cooling flow. (20%)

  • 1. Heat is generated at a uniform steady rate in a long solid cylinder. The cylinder...

    1. Heat is generated at a uniform steady rate in a long solid cylinder. The cylinder loses heat from its exposed surface to surroundings at constant temperature. Show that the radial temperature profile in the cylinder can be represented by the equation: T, = Twer - 9 4k where qy is the rate of heat generation per unit volume and Tur is the maximum temperature in the profile. [30%] In a long solid cylinder of 40mm diameter heat is generated...

  • A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.

    A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...

  • A cylinder with diameter D=6mm has a volumetric heat generation of 176.8×105 W/m3. The surface is...

    A cylinder with diameter D=6mm has a volumetric heat generation of 176.8×105 W/m3. The surface is exposed to air convection with a velocity of V∞ =11.11m/s and temperature at T∞=10 °C. You can initially evaluate air thermal properties at T∞ using Table A.4 or any other available data. (a)Determine the surface temperature Ts of the cylinder (12 points). (b)Is it reasonable to use T∞ rather than the film temperature to evaluate the air properties in this case (3 points)?

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • Problem 3 A portable thermocouple is used to measure the air temperature inside of a sauna....

    Problem 3 A portable thermocouple is used to measure the air temperature inside of a sauna. The sauna is unbearably hot and a person can only stay for 20 seconds, during which the temperature reading keeps on changing and a steady temperature is not reached. Leaving the thermocouple reader in the sauna for extended period of time has been deemed too risky for an electronics device Fortunately, a transient heat transfer model can be used to extract the temperature in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT