Question

A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.


A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. 


(a) Write the finite-difference equation for an internal node with Δx=2 mm 

b) Write the finite difference equation for the node at the fin tip.

3 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

  • A rod of 10-mm diameter and 250-mm length has one end maintained at 100°C

    A rod of 10-mm diameter and 250-mm length has one end maintained at 100°C. The surface of the rod experiences free convection with the ambient air at 25°C and a convection coefficient that depends on the difference between the temperature of the surface and the ambient air. Specifically, the coefficient is prescribed by a correlation of the form, hfc = 2.89[0.6 +0.624(T - T∞)1/6]2, where the units are hfc (W/m².K) and T (K). The surface of the rod has an...

  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • LT An aluminum rod of diameter D 2.5 cm and of length from a wall maintained at T, 300"C. The.coovective heat coefficient h 17 W/m2-K with an ambie.t air temperature T Thermal conductivity k =...

    LT An aluminum rod of diameter D 2.5 cm and of length from a wall maintained at T, 300"C. The.coovective heat coefficient h 17 W/m2-K with an ambie.t air temperature T Thermal conductivity k = 204 WmK. Assume there is e luid by convection from the end of the rod, which is at temperature Ta. Using 2. -38c. nergy transfer to the a finite difference method, with Ax = 5 cm, the fo be derived for the solution of the...

  • A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length...

    A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length of 100 mm is used to enhance heat transfer from a surface which is maintained at 200 C. The cylindrical surface of   the rod is exposed to a convection environment with h = 30 W/m2-K and an ambient temperature of 20 C.        a) Calculate the heat convected away from the rod. b) Calculate the temperature 50 mm from the wall. c) Plot the temperature...

  • Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...

    Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (L =20 mm) and thermal conductivity of 250 W/m-K. What is the maximum temperature that will occur in the wall? L tt-2 mm k=25...

  • A copper pin fin 2.5 mm in diameter protrudes from a wall at 100°C into air...

    A copper pin fin 2.5 mm in diameter protrudes from a wall at 100°C into air at 28°C. ( k=396 W/m-K.) The heat transfer is mainly by natural convection with a heat transfer coefficient of 12 W/m2×K. Calculate heat losses from the fin assuming the fin is infinitely long. If there is an array of 10 copper pin fins, how much power do they dissipate?

  • Problem 2: A stainless steel rod (k-21 W/m-K, p-8000 kg/m3, C,,-570 J/kg-K) with diameter D-10 mm is heat-treated as it...

    Problem 2: A stainless steel rod (k-21 W/m-K, p-8000 kg/m3, C,,-570 J/kg-K) with diameter D-10 mm is heat-treated as it passes through a furnace at a speed of 2 cm/s. The furnace has a convection coefficient of 80 W/m2-K and an air temperature of 900°C. The furnace is 3 m long, and the stainless steel enters at 20°C. (a) Using a control volume of length S traveling with the rod, develop a differential equation for the rate of change of...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT