Question

Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Consider the diagram showing a wall with straight rectangular fins attached on the right side. T, T. - L-20 mm 25 W/m K q=2 xNA, by using the following equation, A Calculate the term NA, N(2wL, (8+t)Nw A 2L 8+t NA, 2x0.02 0.002 0.002 A 10 A CalculteFrom equation (4), obtain the temperature, T,. k k ^ +h \qL 2L T.2 2L +hh,AkhA 2L kh 2L (417)x 50x303(417+ 50) 125 x 288 +(2x

Add a comment
Know the answer?
Add Answer to:
Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Please work on this with process (please complete within one hour.) *I will rate* thank you...

    Please work on this with process (please complete within one hour.) *I will rate* thank you Heat is uniformly generated at the rate of 4 x 105 W/m3 in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (Lf = 16.25 mm) and thermal...

  • Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on...

    Question 11 (15 points) The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2 K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m * 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer...

  • The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of...

    The wall of a liquid-to-gas heat exchanger has a surface area on the liquid side of 1.8 m2 (0.6 m 3.0 m) with a heat transfer coefficient of 255 W/m2K. On the other side of the heat exchanger wall a gas flows, and the wall has 96 thin rectangular steel fins 0.5 cm thick and 1.25 cm high (k = 3 W/m K) as shown in the figure below. The fins are 3 m long and the heat transfer coefficient...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat...

    finite element method 2. Aluminum fins with rectangular profiles (5 mm wide and 1 mm thick) are used to remove heat from a surface whose temperature is 150°C. The temperature of ambient air is 20°C. The thermal conductivity of aluminium is 168 W/m.K. The natural convective coefficient associated with the surrounding air is 35 W/m2.K. The fins are 150 mm long and the heat loss from the tip of the fin may be neglected. (a) Determine the temperature distribution along...

  • A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform...

    A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces  (x=-L, +L), each of which is exposed to a fluid of temperature ∞T∞= 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+b⁢x+c⁢x2 where a= 82.0°C, b= -210°C/m, c= -2 × 104°C/m2, and x is in meters. The origin of the x-coordinate...

  • It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm...

    It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm thickness with constant temperature Tc = 87 degrees C at the bottom of the chip. At the top surface, 20 pin fins with convective ends are attached to the chip. Above the chip, we have the 20 fins plus we also have the exposed board area, which is total area of the chip minus the base area of the 20 fins. The diameter of...

  • Heat transfer at a rate of 500 W through a wall with a thermal conductivity of...

    Heat transfer at a rate of 500 W through a wall with a thermal conductivity of 1.7 W/mK. The wall is 4-m high, 3-m wide, and 50-cm thick. If the inner surface of the wall is at 20 degrees Celsius, determine the temperature at the midplane of the wall. a. 7.7 degrees Celsius b. 53.5 degrees Celsius c. 13.9 degrees Celsius d. 127 degrees Celsius

  • Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric ene...

    Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric energy generation of 0.4MW/m3 is insulated on one side, while the other side is exposed to a fluid at 52 C. The convection heat transfer coefficient between the wall and the fluid is 400W/m2-K. Determine the (20 scores) maximum temperature in the wall. 4. r,rod OA rotates with uniform o o. At the moment, AB- 6r Signatory Score leration of block B at...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT