Question

A plane wall with thermal conductivity of k, is insulated on one side and is exposed to ambient air at To and convection coefficient of h, on the other side. A heat source in the 3) wall is generating a uniform heat rate per unit volume of For one-dimensional steady-state conduction in the wall, derive a proper differential equation for the temperature by either using the heat equations or doing the energy balance. Identify proper boundary conditions and find the temperature distribution in the wall TCr) as a function of q, To, h, L (the wall thickness) and k (thermal conductivity of the wall). (30 points)
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A plane wall with thermal conductivity of k, is insulated on one side and is exposed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric ene...

    Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric energy generation of 0.4MW/m3 is insulated on one side, while the other side is exposed to a fluid at 52 C. The convection heat transfer coefficient between the wall and the fluid is 400W/m2-K. Determine the (20 scores) maximum temperature in the wall. 4. r,rod OA rotates with uniform o o. At the moment, AB- 6r Signatory Score leration of block B at...

  • Consider a large plane wall with a thickness of L and a constant thermal conductivity k....

    Consider a large plane wall with a thickness of L and a constant thermal conductivity k. The left surface of the plane is exposed to a uniform heat flux, ?̇?. The right face is exposed air at uniform ?∞ with h. The emissivity on the right surface is ε. a. Write an appropriate form of heat conduction equation for the plane. b. Express the boundary conditions.

  • A plane wall of thickness L has constant thermal conductivity, k, uniform generation throughout, q, and...

    A plane wall of thickness L has constant thermal conductivity, k, uniform generation throughout, q, and is insulated on one side, at x-0. Only the outer surface temperature (Ts) is known. (a) Derive an equation describing the steady-state wall temperature at any point (x), when given the outer wall surface temperature, Tsi. (b) If L-15 cm, k: 3.4 W/m"K, q-10 kW/m3, and Ts1-300 K, what is the steady-state temperature at x - 6 cm (in K)? S1

  • A large plane wall has a constant thermal conductivity of 8.5W/(m·K), a surface area of 15...

    A large plane wall has a constant thermal conductivity of 8.5W/(m·K), a surface area of 15 m² and a thickness L=25 cm. The temperature on the leftside of the wall (T0) is constant and measured at 0.0°C. A constant heat flux(푞̇H)of 450.0 W/m² entersthe rightside of the wall.a.Express the differential equation and the boundary conditions(mathematical formulation)for steady one-dimensional heat conduction through the wall.b.Obtain a numerical equationfor the variation of temperature in the wall by solving the differential equation. c.Evaluate the...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • 3.77 The exposed surface (x= 0) of a plane wall of thermal conductivity k is subjected...

    3.77 The exposed surface (x= 0) of a plane wall of thermal conductivity k is subjected to microwave radiation that causes volumetric heating to vary as where qo (W/m) is a constant. The boundary at x = L is perfectly insulated, while the exposed surface is main- tained at a constant temperature To. Determine the tem- perature distribution T(a) in terms of x, L, k, 4or and T

  • A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform...

    A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces  (x=-L, +L), each of which is exposed to a fluid of temperature ∞T∞= 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+b⁢x+c⁢x2 where a= 82.0°C, b= -210°C/m, c= -2 × 104°C/m2, and x is in meters. The origin of the x-coordinate...

  • Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k =...

    Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m.K experiences uniform volumetric heat generation at a rate ġ, while convection heat transfer occurs at both of its surfaces (x = -1, + L), each of which is exposed to a fluid of temperature Too = 20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx? where a = 82.0°C,...

  • Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C...

    Two large parallel plates with surface conditions approximating those of a blackbody are maintained at 800°C and 100°C, respectively. Determine the rate of heal transfer by radiation between the plates in Wim and the radiative heat transfer coefficient in W/m K ) 12 Write down the one-dimensional sent heal conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each variable represents 13 Write down the one-dimensional transient heat conduction...

  • 4) An infinite bar with thermal conductivity of k and thickness L is insulated on the...

    4) An infinite bar with thermal conductivity of k and thickness L is insulated on the left surface, whereas air is flowing over the right surface. The bar generates heat at a uniform volumetric rate. State your assumptions clearly. • Derive an expression for temperature profile within the rod in steady state. (20 points) Draw temperature profile for a case, when heat is being generated within the rod. (5 points) Draw temperature profile for the case, when heat is being...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT