Question

. A mass is attached to a spring. The position of the mass as it oscillates...

. A mass is attached to a spring. The position of the mass as it oscillates on the spring is given by: y = A cos (8.2t) where the value of t is in seconds and A is 6.2 cm. (a) What is the period of the oscillator? (2 pts)





(b) What is the velocity of the oscillator at time t = 0 and at time t = T/4? Give magnitude and direction (+ or – y direction). (4 pts)






(c) If the attached mass is 1.2 kg, find the value of the force constant for the spring (k). (3 pts)







(d) What is the acceleration of the oscillator at t = 0? Give both magnitude and direction. (4 pts)







(e) What is the kinetic energy of the oscillator at y = A/3? What fraction of total energy is the kinetic energy at this point? (4 pts)







(f) If you were asked to double the period of the oscillator by using a different mass (with the same spring), would you need a larger mass or a smaller mass? What is this new mass? (3 pts)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

with A Cos t Campaing w 8.2edrc Sec T- 2 0.76 8.2 (b) A Cos (8-2)t = daAx8-2 sin (6-2 t) dt At to. no) 6.2x 8-2 Cmsec = omlsr

Add a comment
Know the answer?
Add Answer to:
. A mass is attached to a spring. The position of the mass as it oscillates...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass attached to a spring oscillates with a period of 3.15 s (a) If the...

    A mass attached to a spring oscillates with a period of 3.15 s (a) If the mass starts from rest at x = 0.0480 m and time t = 0, where is it at time t = 6.45 s? m(b) Is the mass moving in the positive or negative x direction at t - 6.45 s? Opositive x direction O negative x direction Explain.

  • A 0.500 kg mass is attached to a horizontal spring and oscillates such that its position...

    A 0.500 kg mass is attached to a horizontal spring and oscillates such that its position vs. time plot is given below. x Im) 1.0 0.5 .0 2.0 -0.5 (a) What is the period of motion? (b) What is the angular frequency? rad/s (c) What is the spring constant of the spring? N/m (d) What is the fastest speed the mass attains? m/s (e) What is the total mechanical energy of the system?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. What is the spring constant? B. What is the total energy of the oscillator? What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT