Question

As shown in the figure below, two blocks are connected by a string of negligible mass passing over a solid disk pulley with a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

F.B.D of my G502E | brue Bloody mg sino parallel to incline - From Newtons and low in direction T magsing = my Q - © F.B-2 oF.B.D of palley + Tz Moment of mertia of palley I= // MR² Net Torque on palley T= Ila) TAR- T2 R = // MR² /- - T2 - Tg = ma 1

Add a comment
Know the answer?
Add Answer to:
As shown in the figure below, two blocks are connected by a string of negligible mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The figure below shows two blocks connected by a string of negligible mass passing over a...

    The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m1 = 3.8 kg and θ = 12.0°. Assume that the incline is smooth please dont answer if not sure The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m, - 3.8 kg and -12.0°. Assume that the incline is smooth. ni (a) For what value of m2 (in kg) will the system...

  • As shows in the 6gre bew ocks ane od by a ring of sglighle ma ping...

    As shows in the 6gre bew ocks ane od by a ring of sglighle ma ping over a seld dk pley widh a mof 025 k and a of sio The ock on fles inlne is moving wih cott acolion If-1001 20k and 37 ne the acceletion of the blocks acer LLL N As shown in the figure below, two blocks are connected by a string of negligible mass passing over a solid disk pulley witha mass of 0.25 kg...

  • As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0...

    As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0.270 m and moment of inertia I. The block on the frictionless incline is moving with a constant acceleration of magnitude a = 1.20 m/s2. (Let m1 = 15.5 kg, m2 = 22.0 kg, and θ = 37.0°.) From this information, we wish to find the moment of inertia of the pulley. (a) What analysis model is appropriate...

  • Q1) Two blocks are connected by a string of negligible mass passing over a pulley of...

    Q1) Two blocks are connected by a string of negligible mass passing over a pulley of radius r=0.2 m and moment of inertia I (as shown). The block on the frictionless moving with a constant acceleration o mi T Spulley = 0.2 m a) the tension T. T, m2 20 kg 40 kg) b) the tension T2 c) the net torque (t) on the pulley. d) the moment of inertia (I) of the pulley.

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.40 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of  m2 = 23.5 kg, and the tension in the string attached to it is T2....

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of m2 = 22.5 kg, and the tension in the string attached to it is...

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T,. The hanging block has a mass of m, = 23.5 kg, and the tension in the string attached to it is...

  • The figure shows two blocks connected by a cord (of negligible mass) that passes over a...

    The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. Block 1 has mass m2 = 1.00 kg; block 2 has mass m2 = 3.30 kg. What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord? IN (a) Number Units m/s2 (b) Number Units N

  • Two blocks with masses m1 and m2 are connected by a massless string over a frictionless...

    Two blocks with masses m1 and m2 are connected by a massless string over a frictionless pulley. Block 1 sits on a frictionless horizontal surface and block 2 sits on a plane inclined at an angle θ above the horizontal. The coefficient of friction between block 2 and the incline is µk. The pulley, which is a uniform disk, has a mass mp and a radius R. When you release the blocks, both blocks slide without the string slipping on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT