Question

Q1) Two blocks are connected by a string of negligible mass passing over a pulley of radius r=0.2 m and moment of inertia I (
0 0
Add a comment Improve this question Transcribed image text
Answer #1

40 Kg. 20 Ка Mpully = 0.2 m m2 = TI mi T2 mg Using Fall Body Diagram, (a) ma 400 Newton Mag-To — т, а b) on Te m₂ (I-a) 2009-

Add a comment
Know the answer?
Add Answer to:
Q1) Two blocks are connected by a string of negligible mass passing over a pulley of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0...

    As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0.270 m and moment of inertia I. The block on the frictionless incline is moving with a constant acceleration of magnitude a = 1.20 m/s2. (Let m1 = 15.5 kg, m2 = 22.0 kg, and θ = 37.0°.) From this information, we wish to find the moment of inertia of the pulley. (a) What analysis model is appropriate...

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.40 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of  m2 = 23.5 kg, and the tension in the string attached to it is T2....

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T,. The hanging block has a mass of m, = 23.5 kg, and the tension in the string attached to it is...

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of m2 = 22.5 kg, and the tension in the string attached to it is...

  • As shown in the figure below, two blocks are connected by a string of negligible mass...

    As shown in the figure below, two blocks are connected by a string of negligible mass passing over a solid disk pulley with a mass of 0.25 kg and a radius of 0.300 m. The block on the frictionless incline is moving with a constant acceleration. If m= 10.0 kg, m2 -20 kg, and 0 = 37.0°, determine the acceleration of the blocks. M .

  • Two blocks are connected by a string that passes over a pulley of radius R and...

    Two blocks are connected by a string that passes over a pulley of radius R and moment of Inertia I. The blocks of mass m1 slides on a frictionless, horizontal surface,the block of mass m2 is suspended from the string. Find the acceleration a of the blocks and the Tensions T1 and T2 assuming the string does not slip on the pulley.

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • Two Blocks Passing Over a Pulley.problem Points: 4 Two blocks are connected by a light string...

    Two Blocks Passing Over a Pulley.problem Points: 4 Two blocks are connected by a light string passing over a pulley of radius 0.2 m and moment of inertial. The blocks move towards the night with an acceleration of 1.2 m/ frictionless inclines. The blocks A and B have a mass of 11.5 kg and 10.5 kg respectively. The angle 011 37" and the ange 021 05 2 along their Determine the tension on a 6110 N Incorrect. Tries 2/5 Previous...

  • The figure below shows two blocks connected by a string of negligible mass passing over a...

    The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m1 = 3.8 kg and θ = 12.0°. Assume that the incline is smooth please dont answer if not sure The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m, - 3.8 kg and -12.0°. Assume that the incline is smooth. ni (a) For what value of m2 (in kg) will the system...

  • Two blocks are connected by a light string passing over a pulley of radius 0.40 m and moment of inertia I. The...

    Two blocks are connected by a light string passing over a pulley of radius 0.40 m and moment of inertia I. The blocks move (towards the right) with an acceleration of1.00 m/s2along their frictionless inclines (see the figure).(a) Draw free-body diagrams for each of the two blocks and the pulley. (Do this on paper. Your instructor may ask you to turn in this work.)(b) Determine FTA and FTB, the tensions in the two parts of the string.FTA =NFTB =N(c) Find...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT