Question

The Haber-Bosch process is used to make ammonia from nitrogen and hydrogen: N2(g) + 3 H2(g)...

The Haber-Bosch process is used to make ammonia from nitrogen and hydrogen: N2(g) + 3 H2(g)  2 NH3(g). A 10.0 L reactor at 450 °C is filled with 3 moles of nitrogen and 12 moles of hydrogen, K is 0.16 under these conditions.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Haber-Bosch Process for manufacture of ammonia

N2 (g) + 3H2 (g)\leftrightharpoons 2NH3 (g)

Equilibrium constant for the preparation of ammonia is given by,

K = [N H3] [N2] [H23

where [NH3], [N2], [H2] are molar concentrations of ammonia, nitrogen and hydrogen respectively.

From the chemical reaction, it is found that one mole of nitrogen reacts with three moles of hydrogen and give two moles of ammonia.

[N2] = 3 mole/10L = 0.3 M

[H2] = 12 mole/10L = 1.2 M

N2 H2 NH3
Initial 0.3 M 1.2 M 0 M
change -x M -3x M +2x M
Equilibrium (0.3-x) M (1.2-3x) M 2x M

K = 0.16

K = [N H3] [N2] [H23

0.16 = - 2x² (0.3 - x)(1.2-3.)3

use the quadratic equation, x = 0.104436 or 1.325705

use 0.104436 to find out concentration of ammonia, nitrogen and hydrogen, reject 1.325705 due to negative concentration terms obtained.

[NH3] = 2x

= 2 * 0.104436

= 0.208872M

[N2] = 0.3 - x = 0.3 -0.104436

= 0.195564 M

[H2] = 1.2 - 3x

= 1.2 -3(0.104436)

= 0.886692 M

Add a comment
Know the answer?
Add Answer to:
The Haber-Bosch process is used to make ammonia from nitrogen and hydrogen: N2(g) + 3 H2(g)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g)3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.36 g H2 is allowed to react with 9.75 g N2, producing 1.75 g NH3 What is the...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.43 g H2 is allowed to react with 9.70 g N2, producing 2.31 g NH3. Part A: What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.26 g H2 is allowed to react with 9.75 g N2, producing 1.63 g NH3. Part A) What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.10 g H2 is allowed to react with 9.72 g N2, producing 1.68 g NH3. Part A What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.94 g H2 is allowed to react with 10.1 g N2, producing 1.59 g NH3. Part A What...

  • The reaction for the Haber process, the industrial production of ammonia, is N2(g) + 3 H2(g)...

    The reaction for the Haber process, the industrial production of ammonia, is N2(g) + 3 H2(g) + 2 NH3(g) Assume that under certain laboratory conditions ammonia is produced at the rate of 2.98 x 10-5 mol L-15-1. At what rate is nitrogen consumed? At what rate is hydrogen consumed? N2 is consumed at the rate of mol L-15-1 H2 is consumed at the rate of mol L-15-1

  • The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the  equation 3H2(g) + N2(g) ---> 2NH3(g) The ammonia produced in the Haber process has a wide range of uses from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.57 g H2 is allowed to react with 9.87 g N2, producing 1.69 g Nh3....

  • In the Haber–Bosch process, ammonia is synthesized from hydrogen and nitrogen gas. The equilibrium concentrations of...

    In the Haber–Bosch process, ammonia is synthesized from hydrogen and nitrogen gas. The equilibrium concentrations of NH3, H2, and N2 are 0.0040 M, 0.20 M, and 0.080 M, respectively. Determine the directional shift of the reaction for each of the following situations: i. All three concentrations are 0.20 M ii. All three concentrations are 2.0 M

  • 10) The Haber-Bosch Process for nitrogen fixation is needed to make fertilizers such as ammonia (NH3):...

    10) The Haber-Bosch Process for nitrogen fixation is needed to make fertilizers such as ammonia (NH3): N2 (g) + 3 H2 (g) → 2 NH3 (g) The above reaction produces about 1.75 × 1014 g of ammonia each year, and is responsible for ~1–2% of the world’s energy consumption! This reaction is not very efficient however. Typically it only results in about 87% yield. How many grams of ammonia are NOT formed every year due to the inefficiency of this...

  • QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen...

    QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen gas at STP according to the following reaction: 3 H2(g) + N2(g) → 2 NH3(g) a. What is the volume of ammonia in the reaction vesselif 2.253 moles are produced? b. How many liters of nitrogen are needed to react with 50.2 g of hydrogen?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT