Question

QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen gas at STP according t
0 0
Add a comment Improve this question Transcribed image text
Answer #1

H + This process_._ofmanufacturing NH3_is carried outat__Standard temperatüre & pressure (STP) condition. t STP one mole gas+ 3 H 2 (3 mole) BR 3x 210g N (1 mole) 2 NH3 (2 mile) OR ANOR 2X 17 g = 6g = 349 According to balanced equation - -6 g He nee

Add a comment
Know the answer?
Add Answer to:
QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to...

    1. Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation: 3 H2(g) + N2(g) → 2 NH3(2) - How many grams of H2 are needed to produce 14.43 g of NH3? 2. When propane (C2H8) burns, it reacts with oxygen gas to produce carbon dioxide and water. The unbalanced equation for this reaction is... CzHz (g) + O2(g) → CO2(g) + H2O(g) This type of reaction is referred to as a complete...

  • The Haber process is used to synthesize ammonia (NH3) on a large scale by the reaction...

    The Haber process is used to synthesize ammonia (NH3) on a large scale by the reaction of nitrogen gas with hydrogen gas as follows: N2 (g) + 3 H2 (g) → 2 NH3 (g) Consider a reaction between 9.9 L of nitrogen gas and 38.0 L of hydrogen gas at the exact same temperature and pressure. What volume of ammonia (in L) would you expect to be produced (at the exact same T and P as the reactants)? Express your...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g)3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.36 g H2 is allowed to react with 9.75 g N2, producing 1.75 g NH3 What is the...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.43 g H2 is allowed to react with 9.70 g N2, producing 2.31 g NH3. Part A: What...

  • The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the  equation 3H2(g) + N2(g) ---> 2NH3(g) The ammonia produced in the Haber process has a wide range of uses from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.57 g H2 is allowed to react with 9.87 g N2, producing 1.69 g Nh3....

  • 1) Ammonia is produced using the Haber process: 3 H2 + N2 2 ---> NH3. Calculate...

    1) Ammonia is produced using the Haber process: 3 H2 + N2 2 ---> NH3. Calculate the mass of ammonia produced when 35.0 g of nitrogen react with 12.5 g of hydrogen. 2) Ammonia is produced using the Haber process:   3 H2+ N2 ---> 2 NH3 What percent yield of ammonia is produced from 15.0 kg each of H2and N2, if 13.7 kg of product are recovered?  Assume the reaction goes to completion. 3)Sulfuric acid is found in some types of...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.26 g H2 is allowed to react with 9.75 g N2, producing 1.63 g NH3. Part A) What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.10 g H2 is allowed to react with 9.72 g N2, producing 1.68 g NH3. Part A What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.94 g H2 is allowed to react with 10.1 g N2, producing 1.59 g NH3. Part A What...

  • The Haber-Bosch process is used to make ammonia from nitrogen and hydrogen: N2(g) + 3 H2(g)...

    The Haber-Bosch process is used to make ammonia from nitrogen and hydrogen: N2(g) + 3 H2(g)  2 NH3(g). A 10.0 L reactor at 450 °C is filled with 3 moles of nitrogen and 12 moles of hydrogen, K is 0.16 under these conditions.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT