Question

The Haber process is used to synthesize ammonia (NH3) on a large scale by the reaction...

The Haber process is used to synthesize ammonia (NH3) on a large scale by the reaction of nitrogen gas with hydrogen gas as follows: N2 (g) + 3 H2 (g) → 2 NH3 (g) Consider a reaction between 9.9 L of nitrogen gas and 38.0 L of hydrogen gas at the exact same temperature and pressure. What volume of ammonia (in L) would you expect to be produced (at the exact same T and P as the reactants)? Express your answer to two significant figures.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
The Haber process is used to synthesize ammonia (NH3) on a large scale by the reaction...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen...

    QUESTION 24 The Born-Haber process is used to manufacture ammonia (NH3) from nitrogen gas and hydrogen gas at STP according to the following reaction: 3 H2(g) + N2(g) → 2 NH3(g) a. What is the volume of ammonia in the reaction vesselif 2.253 moles are produced? b. How many liters of nitrogen are needed to react with 50.2 g of hydrogen?

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.26 g H2 is allowed to react with 9.75 g N2, producing 1.63 g NH3. Part A) What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.10 g H2 is allowed to react with 9.72 g N2, producing 1.68 g NH3. Part A What...

  • The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.94 g H2 is allowed to react with 10.1 g N2, producing 1.59 g NH3. Part A What...

  • The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts...

    The Haber-Bosch process is a very important industrial process. In the Haber Process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the  equation 3H2(g) + N2(g) ---> 2NH3(g) The ammonia produced in the Haber process has a wide range of uses from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.57 g H2 is allowed to react with 9.87 g N2, producing 1.69 g Nh3....

  • 1. The cartoon below represents the reaction of nitrogen gas (N2) with hydrogen gas (H2) to synthesize ammonia (NHs). Industrially, this che pro mical process is called the Haber-Bosch cess...

    1. The cartoon below represents the reaction of nitrogen gas (N2) with hydrogen gas (H2) to synthesize ammonia (NHs). Industrially, this che pro mical process is called the Haber-Bosch cess, and is still a very important reaction in the manufacture of fertilizers. The ability to fix every day). It has been estimated that use of nitrogen-based fertilizers has doubled the world's a. The cartoon below shows 6 molecules of hydrogen gas and 2 molecules of nitrogen nitrogen and manufacture fertilizers...

  • The Haber process for the production of ammonia is the main industrial process of producing ammonia...

    The Haber process for the production of ammonia is the main industrial process of producing ammonia today. Prior to developing this process, ammonia was difficult to produce on an industrial scale. The reaction for the Haber process is: N2(g) + 3 H2(g) ⇌ 2 NH3(g). Using the following values, determine the equilibrium constant for this reaction at 25oC. Substance ΔGfo(kJ/mol) N2 0 H2 0 NH3 -16.4 Enter your answer to three significant figures. please answer this before 1130!!

  • 1) Ammonia is produced using the Haber process: 3 H2 + N2 2 ---> NH3. Calculate...

    1) Ammonia is produced using the Haber process: 3 H2 + N2 2 ---> NH3. Calculate the mass of ammonia produced when 35.0 g of nitrogen react with 12.5 g of hydrogen. 2) Ammonia is produced using the Haber process:   3 H2+ N2 ---> 2 NH3 What percent yield of ammonia is produced from 15.0 kg each of H2and N2, if 13.7 kg of product are recovered?  Assume the reaction goes to completion. 3)Sulfuric acid is found in some types of...

  • The reaction for the Haber process, the industrial production of ammonia, is N2(g) + 3 H2(g)...

    The reaction for the Haber process, the industrial production of ammonia, is N2(g) + 3 H2(g) + 2 NH3(g) Assume that under certain laboratory conditions ammonia is produced at the rate of 2.98 x 10-5 mol L-15-1. At what rate is nitrogen consumed? At what rate is hydrogen consumed? N2 is consumed at the rate of mol L-15-1 H2 is consumed at the rate of mol L-15-1

  • Nitrogen and hydrogen react to produce ammonia (Haber process). the Kp for the reaction is 4.51...

    Nitrogen and hydrogen react to produce ammonia (Haber process). the Kp for the reaction is 4.51 x 10^-5 at 450 degrees C. determine if the following mixtures are at equilibrium at 450 degrees C. If not, indicate the direction (toward product or toward reactants) in which the mixture must shift to achieve equilibrium. (Calculate Qp for each case). N2 (g) + 3H2 (g) ⇌ 2 NH3 (g) a) 98 atm Nh3, 45 atm N2, 55 atm H2 b) 57 atm...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT