Question

as illustrated in the theory scction or this report. 7) In the diagram below, a cart is released from rest at a distance xi from the first of two photogates. The cart then rolls down the ramp through both photogates. The distance between the photogates is x2. For this problem, you may assume that the cart is frictionless and the acceleration of the cart a g sin e. Cart Photogate 1 Photogate 2 xi r2 Ifx1-20 cm, x2 = 50 cm, and 8-20°, what is the average velocity of the cart between the photogates (over the distance x2)? a) b) If xi is reduced to 19 cm and the distance x2 remains the same, what is the gates (over the distance x2)? average velocity of the cart between the photo

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
as illustrated in the theory scction or this report. 7) In the diagram below, a cart...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7) In the diagram below, a cart is released from rest at a distance x1 from...

    7) In the diagram below, a cart is released from rest at a distance x1 from the first of two photogates. The cart then rolls down the ramp through both photogates. The distance between the photogates is x2. For this problem, you may assume that the cart is frictionless and the acceleration of the cart a = g sin θ. a) If x1 = 20 cm, x2 = 50 cm, and θ = 20°, what is the average velocity of...

  • 4. Energy and Momentum for 15 points: A 200 gram lab cart is initially at rest...

    4. Energy and Momentum for 15 points: A 200 gram lab cart is initially at rest on top of a 50 cm ramp, as shown. Note that the wheels are very light and the axle has no friction in it. You push the cart as it moves through a distance of 20 cm with a constant force of 10N in a direction oriented 20 degrees below horizontal. After you stop pushing on the cart, it encounters a ramp, and rolls...

  • some context Problem 3: Use simple kinetic theory of gases discussed in section 1.3.2 as well...

    some context Problem 3: Use simple kinetic theory of gases discussed in section 1.3.2 as well as Fourer's law of condustion to prove: 2 R373 D11 = 3113/202pm Dal We were unable to transcribe this imageof a nes. the xed the led negligible The following assumptions about the structure of the cases are made in order to investigate the statistical rules of the random motion of the molecules: The size of the gas molecules is negligible compared with the distance...

  • Problem 4: Read Appendix 2 below (Sec. 1.4.1 of Kasap) and then solve. A metallic back...

    Problem 4: Read Appendix 2 below (Sec. 1.4.1 of Kasap) and then solve. A metallic back contact is applied to the CdTe solar cell of Problem 1 using a set up similar to that described in Figure 1.74 (b) on the next page. To form the metallic back contact, two evaporation sources are used, Cu and Au. An initial 3 nm layer of Cu is deposited first and then 30 nm of Au is deposited. After these depositions, the sample...

  • help please? this was the only other information given REPORT SHEET Determination of the Solubility-Product Constant...

    help please? this was the only other information given REPORT SHEET Determination of the Solubility-Product Constant for a Sparingly Soluble Salt EXPERIMENT 8 A. Preparation of a Calibration Curve Initial (Cro121 0.0024 M Absorbance 5 mL Volume of 0.0024 M K Cro Total volume 1. I mL 100 mL 2. 100ML 3. 10 mL 100ml 4. 15 mL 100 ML Molar extinction coefficient for [CrO2) [Cro,2) 2.4x100M 12x1044 2.4810M 3.6810M 0.04) 2037.37 0.85 1.13 2. 3. Average molar extinction coefficient...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT