Question

Please report your answer to 2 significant figures. As shown below, a block of mass m = 0.37 kg is initially at rest on a fri
0 0
Add a comment Improve this question Transcribed image text
Answer #1

SASARA mass (m): 0.37 kg hism, he = 1um. sprong is compreessed x=2.7m Spring constant (k)= 217 Mlow usong conservation of ene

Add a comment
Know the answer?
Add Answer to:
Please report your answer to 2 significant figures. As shown below, a block of mass m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 2 10 pts A block of mass m = 4.0 kg is dropped from height...

    Question 2 10 pts A block of mass m = 4.0 kg is dropped from height h = 74 cm onto a spring of spring constant k = 1530 N/m (See the figure below). Find the maximum distance the spring is compressed. (Your result must be in meters and include 2 digit after the decimal point. Maximum of 5% of error is accepted in your answer. Take g = 9.8 m/s 2.) pecccccee

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°

    A block of mass 3.00 kg is pressed against a spring (k=3,100N/m) near the bottom of a board inclined at θ = 28.0°, as shown in Figure A2.08. When released, the block is projected up the incline and the spring expands by 14.0 cm to its normal length. Using the law of conservation of energy, determine the maximum distance (d) traveled by the block up the incline,(a) in the absence of friction.(b)when the coefficient of kinetic friction between the block and...

  • A block of mass m = 3.5 kg is on an inclined plane with a coefficient...

    A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.31, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 54°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...

  • Answer to five significant figures please 15: Serway CP 13 56-10.0 pts possible A 47 g block is released from rest and s...

    Answer to five significant figures please 15: Serway CP 13 56-10.0 pts possible A 47 g block is released from rest and slides down a frictionless track that begins 1.8 m ahove the horizontal, as shown in the figure. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 24 N/m. 47 g 24 N/m 1.8 m Find the maximum distance the spring is compressed....

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • A block of mass 50 kg is sitting on a platform as shown in the figure...

    A block of mass 50 kg is sitting on a platform as shown in the figure below. The platform sits on a spring with k = 2,200 N/m. The mass is initially at rest. (a) Add a coordinate system to this sketch. Choose File No file chosen This answer has not been graded yet. Where is a convenient place to choose the origin of the vertical (y) axis? This answer has not been graded yet. 0 be at the position...

  • PROBLEM 1 (35 %) The mechanical system in the figure below consists of a disk of radius r, a block of mass m, a spr...

    PROBLEM 1 (35 %) The mechanical system in the figure below consists of a disk of radius r, a block of mass m, a spring of stiffness (spring constant) k, and a damper with damping ratio b. The disk has moment of inertia Jabout its center of mass (pivot point O), and the block is subjected to an external force t) as shown in the figure. The spring is unstressed when x 0= 0. Assume small 0. (a) (10 points)...

  • g=10 pi =3 B) C) 2 2mg 4 For Q6 to 08: A block of mass...

    g=10 pi =3 B) C) 2 2mg 4 For Q6 to 08: A block of mass m is released from rest from a spring Q6. Find the work done by friction on of constant k that has been compressed a distance L. The block leaves the spring at x=0 when the spring has its normal length. The track the block as it travels from x=0 to x=D. shown has friction only between x=0 and x=D with a coefficient of mgAD...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT