Question

Block B of mass 10.0 kg is placed in contact with an unstretched spring on a horizontal, frictionless surface. The other end
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

apply linear momentum conservation

Pai +Pbi = Pabf

4*20 + 0 = ( 4+10)*vf

vf =80/14 = 5.7142 m/s

so speed of combined blocks =5.71428571 m/s

b)

assuming there is no friction force on the ground

kinetic energy of two block = goes into stored energy in spring

1/2*(10+4)*5.714^2 = 1/2*k*2.6^2

k =  (10+4)*5.714^2 /2.6^2 =

k≈67.6179 N/m

c)

just before collision spring was in its natural lenght so it was equilibrium position so from equilibrium to maximum compression

time taken = t = T/4  

m = 10+4 =14 kg

T = 2pi *sqrt( m/k) = 2*pi*sqrt( 14 / 67.6179 ) = 2.8589927

so t= 2.8589927/4 = 0.714748175 sec answer

****************************************************************************
Goodluck Comment in case any doubt, will reply for sure..

Add a comment
Know the answer?
Add Answer to:
Block B of mass 10.0 kg is placed in contact with an unstretched spring on a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.0-kg block (Block 1) at rest on a horizontal frictionless surface is connected to unstretched...

    A 1.0-kg block (Block 1) at rest on a horizontal frictionless surface is connected to unstretched spring Ck 400 N/m) whose other end is fixed. A 2.0-kg block (Block 2) moving at 4.0 m/s collides with Block 1. Block 2 is found to move leftward with a speed of 1 m/s after collision. (1) What is the speed of Block 1 after collision? (6 pts) (2) What maximum compression of the spring occurs when Block I momentarily stops? (6 pts)...

  • A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the...

    A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 - 3.9 kg initially moving to the left with a speed of 1.8 m/s as shown in figure (a). The spring constant is 505 N/m in A moving block collides with another moving block with a spring attached: (a) before...

  • Block A of mass, mA = 1.7 kg is shot from a spring device of spring...

    Block A of mass, mA = 1.7 kg is shot from a spring device of spring constant, k = 700 N/m along a frictionless horizontal surface. The initial compression of the spring is 0.300 m. The shot makes the block rise to another horizontal level at a height h= 1m above the first. On this horizontal it collides with another stationary block B of mass mB = 3.5 kg. The blocks stick together and encounter a rough surface. The blocks...

  • 1 3. A block of mass m 1.9 kg is held against a spring of spring...

    1 3. A block of mass m 1.9 kg is held against a spring of spring constant k 410 and compressed 0.75 m. When released, it is pushed along the frictionless surface towards mi rebounds mass m 4.3 kg. The two masses collide and mass towards the spring at a speed of 2.1 m/s, while mass m slides back towards the spring at a sp a. What is the speed of mass mi right before the collision? b. What is...

  • A solid block of mass m2 = 2.3 kg, at rest on a horizontalfrictionless surface,...

    A solid block of mass m2 = 2.3 kg, at rest on a horizontal frictionless surface, is connected to a relaxed spring (with spring constant k = 260 N/m whose other end is fixed. Another solid block of mass m1 = 2.2 kg and speed v1 = 3.3 m/s collides with the 2.30 kg block. If the blocks stick together, what is their speed immediately after the collision?What is the maximum compression of the spring?

  • Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on...

    Chapter 09, Problem 058 In the figure, block 2 (mass 1.40 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 109 N/m. The other end of the spring is foxed to a wall. Block 1 (mass 1.20 kg), traveling at speed v1 - 4.10 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Number Units

  • A block of mass m -2.00 kg collides head on with a block of mass m-...

    A block of mass m -2.00 kg collides head on with a block of mass m- 10.0 kg initially at rest on a rough horizontal surface. The block m strikes m2 with a speed of 4.00 m/s. Immediately after the very brief inelastic collision, the 2.00 kg block bounces back with a speed of 1.20 m/s. Ignore the effect of friction during the collision. (a) 4pts.] Calculate the speed of the 10.0 kg block immediately after the collision. (b) 4...

  • A block of mass m1 = 1.0 kg initially moving to the right with a speed...

    A block of mass m1 = 1.0 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.4 kg initially moving to the left with a speed of 2.6 m/s as shown in figure (a). The spring constant is 530N/m. (A) Find the velocities of the two blocks after the collision. (B) During the collision, at the instant block 1...

  • Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end...

    Block 2 (mass 1.10 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant 144 N/m. The other end of the spring is fixed to a wall. Block 1 (mass 1.70 kg), traveling at speed v1 = 3.60 m/s, collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed? Answer 0.305 m My question is how did they solve...

  • 6. Consider a horizontal spring with spring constant k. A block with mass m is pushed...

    6. Consider a horizontal spring with spring constant k. A block with mass m is pushed far to the left against the spring until the spring is compressed a distance r relative to its relaxed length. A second block, which is stationary and also has a mass m, is located to the right of the spring im rrm a) We release the first block from rest. Due to the force from the spring, it slides to the right and eventually...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT