Question

1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for arbitrary n, Vo For your solution, please provide a printout of your program, together with a url to an online listing of your code (eg. in a google doc). You may use mass mF5.11 x10° eV/c, V。-3 keV, а 1 nm. d) Now add a perturbation to the above potential defined as bx: -a<r<a V(z) ={ : otherwise 0 What are the corrections to the energy eigenvalues to first order in b? e) What are the corrections to Vn to leading order in b? You should express your answer in . You may ignore the contribution from the terms of an expansion over the w with v continuum states f Extra Credit: Starting with the computer program you created earlier for part (b), extend it to compute the second-order corrections to the ground state energy eigenvalue for a concrete situation with mass m-5.11 x 10° eV/c, V-3 keV, a-1 nm, and b-43 eV/nm.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans: For a) and b) ion 2 Krsian 3 to ise malxe so we expect to find a solution in terms of traveling waves. This is not so interesting, we only note that this describes the case of an unbound particle. n the second case, the kinetic energy is greater than zero for |xla and negative otherwise (since the total energy is negative). Notice that I set E to be a positive quantity, and the systems energy is -E. We also assume that E <Vo. The equations are thus rewritten as: Then we expect waves inside the well and an imaginary momentum (yielding exponentially decaying probability of finding the particle) in the outside regions. More precisely, in the 3 regions we findIt And the wavefunction is Reyion For Finding coefficients, we match the boundary conditions. So for 3 regions: Region 1 : ψ(

3) Program for finite square well potential (c++) :

clear all; close all;

a = 1; %% Length

M = 5.11; %% Mass

N = 512;

x = linspace(-a/2,a/2,N); x = x';

k = N*linspace(-1/2,1/2,N); k = k';

dt = 1e-3; %% Time step

%%% Potential

V0 = 3000;

V = zeros(length(x),1) - V0; % 1*((2*x).^2 - (0.6*a)^2); %

b = a/16;

V(x<-b) = 0;

V(x>+b) = 0;

Phi0 = exp(-(5*(x-0*a/128)).^2);

Phi0c = conj(Phi0); %% real(Phi0)- i*imag(Phi0);

%%

figure(1);set(gcf,'position',[37 208 538 732]);

plot(x,V,'r');hold on;plot(x,max(abs(real(V)))*abs(Phi0c));hold off; pause(1);

%%

GK = fftshift(exp(-(i*dt/(4*M))*((2*pi/a)^2)*(k.^2))); %% dt/2 kinetic energy propagator

GK2 = fftshift(exp(-(i*dt/(2*M))*((2*pi/a)^2)*(k.^2))); %% dt kinetic energy propagator

GV = exp(-i*dt*V); %% Potential spatial interaction

% plot((-(dt/(4*M))*((2*pi/a)^2)*(k.^2)));

% plot(-dt*V);

%%

iPhi = fft(Phi0);

Phi = ifft(iPhi.*GK);

Phi = GV.*Phi;

NPt = 50000;

Pt = zeros(1,NPt);

En = -105.99; %% Energy eigen value

T = dt*NPt;

t = linspace(0,T,NPt);

wt = (1-cos(2*pi*t/length(t)));

uns = 0;

for nrn = 1:NPt

iPhi = fft(Phi);

Pt(nrn) = trapz(x,Phi0c.*ifft(iPhi.*GK));

Phi = ifft(iPhi.*GK2);

%%

unl = Phi*wt(nrn)*exp(i*En*nrn*dt);

if nrn > 1

una = (unp + unl)*dt/2; %% Trapezoidal area

uns = uns + una; %% Explicit trapezoidal integration

if mod(nrn,1000) == 0

figure(1);

subplot(4,1,3);plot(x,abs(una));

title('int_t^{t+dt} Phi_x(t) w(t) exp(i*E_n*t) dt');

xlabel('x');axis tight;

subplot(4,1,4);plot(x,real(uns));

title('Eigen function @ E = -105.99');

xlabel('x');ylabel('Amp');axis tight;

end

end

unp = unl;

%%

if mod(nrn,1000) == 0

figure(1);

subplot(4,1,1);plot(x, real(Phi),'r');

title(['Phi_x t=',num2str(t(nrn))]);

xlabel('x');ylabel('Amp');axis tight;

subplot(4,1,2);plot(k,fftshift(real(iPhi)),'r-');

title('Phi_k');

xlabel('k');ylabel('k-space Amp');axis tight;

pause(0.2);

end

%%

Phi = GV.*Phi;

end

iPhi = fft(Phi);

Phi = ifft(iPhi.*GK);

%%

estep = 1; %% Sampling period

Po = Pt(1:estep:length(Pt));

T = dt*NPt;

t = linspace(0,T,length(Po));

E = (1/dt)*(linspace(-pi,pi,length(Po)));

%%

Pe = fftshift(fft(((1-cos(2*pi*t/T)).*Po/T)));

%%

figure(2);subplot(2,1,1);plot(t,real(Po));

title('Correlation Function ');xlabel('Time');

figure(2);subplot(2,1,2);plot(E,log(fliplr(abs(Pe))),'r');

title('Energy Spectrum');xlabel('Energy');ylabel('Power');

axis([-210 0 -17 5]);

pause(1);

%%-------------------------------------------------------------------------

%% Analytic method: For Even Solutions (Even Wave functions)

%%

z0 = b*sqrt(2*M*V0);

z = 0:0.01:20*pi;

y1 = tan(z);

y2 = sqrt((z0./z).^2 - 1);

figure(3);subplot(2,1,1);plot(z,y1,z,y2);

hold on;

plot(z,0*z,'r');

axis([0 45 0 35]);

title('tan(z) = [(z_0/z)^2 - 1]^{1/2}');

crss_n = [1.5 4.5 7.6 10.8 13.83 16.9 20.0 23.0 26.1 29.1 32.2 35.2 38.2 41.1];

%% ^-- get these values by looking at the graph (approx)

g = inline('tan(z) - sqrt((z0/z).^2 - 1)','z','z0');

for nrn = 1:14

zn(nrn) = fzero(@(z) g(z,z0),crss_n(nrn));

end

figure(3);subplot(2,1,1);hold on;plot(zn,tan(zn),'rx');

q = zn/b;

Em = ((q.^2)/(2*M))-V0;

%%

for nrn = 1:length(Em),

figure(3);subplot(2,1,2);hold on;

plot([Em(nrn),Em(nrn)],[-17,6]);

end

%%

figure(3);subplot(2,1,2);

plot(E,log(fliplr(abs(Pe))),'r');hold on;

title('Energy Spectrum (Blue: Even solutions)');

xlabel('Energy');ylabel('Power');

axis([-210 0 -17 5]);

d) If we add b

Here I type Mathematica code to find the energy eigenvalue E

b = 3;

v[x_] := If[Abs[x - b/2] < 0.5, 0, 50];

nMax = 50;

basis[n_, x_] := Sqrt[2/b]*Sin[n Pi x/b];

vMatrix = Table[NIntegrate[basis[n, x]*v[x]*basis[m, x],

{x, 0, b}], {n, 1, nMax}, {m, 1, nMax}];

h0Matrix = DiagonalMatrix[Table[n^2 Pi^2/(2*b^2), {n, 1, nMax}]];

{eValues, eVectors} = Eigensystem[h0Matrix + vMatrix]; eValues

For b value you can take anything, just, for example, I have taken 3.

Add a comment
Know the answer?
Add Answer to:
1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT