Question

A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction...

A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction of an x axis. The displacement y of the string particle at x = 0 is given in the figure as a function of time t. The scale of the vertical axis is set by ys = 4 cm. The wave equation is to be in the form of

y = ym sin(kx - ωt + φ).

(a) At t = 0, is a plot of y versus x in the shape of a positive sine function or a negative sine function? What are (b) ym, (c) k, (d) ω, (e) φ, (f) the sign in front of ω, and (g) the wave speed (speed of the wave along the string) and (h) What is the transverse velocity of the particle at x = 0 when t = 3.00 s?

hiFvAAyygAjsABUPhBkIxiZBIFZV4B5m4ior4JMo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ware length = d = 19cm = 0.19m. Ys = 4cm y=flt) = Yg Sin wt us=46m. w=24 25 T 14 ware it travelling along pusshire x-adig so

Add a comment
Know the answer?
Add Answer to:
A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal wave moving along a string is shown twice below, as crest A travels in...

    A sinusoidal wave moving along a string is shown twice below, as crest A travels in the positive direction of an x axis by distance d = 1.5 cm in 4.4 ms. The tick marks along the axis are separated by 3.0 cm; height H = 6.00 mm. The wave equation is of the form below. y(x, t) = ym sin(kx ± ωt) (a) What is ym? mm (b) What is k? rad/m (c) What is ω? rad/s (d) What...

  • A transverse sinusoidal wave is moving along a string in the positive direction of an x...

    A transverse sinusoidal wave is moving along a string in the positive direction of an x axis with a speed of 87 m/s. At t=0, the string particle at x = has a transverse displacement of 4.2 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = is 17 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave? If the wave equation...

  • A sinusoidal transverse wave is travelling along a string in the negative direction of an x...

    A sinusoidal transverse wave is travelling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t = 0; the y intercept is 4.0 cm. The string tension is 3.3 N, and its linear density is 44 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave, (e) Find the maximum transverse speed of a particle in the...

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

  • At time t = 0 and at position x = 0 m along a string, a traveling sinusoidal wave with an angular...

    At time t = 0 and at position x = 0 m along a string, a traveling sinusoidal wave with an angular frequency of 450 rad/s has displacement y = +4.4 mm and transverse velocity u = -0.71m/s. If the wave has the general form y(x, t) = ym sin(kx - ωt + φ), what is phase constant φ?

  • Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction...

    Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t 0; the y intercept is 4.0 cm. The string tension is 2.1 N, and its linear density is 21 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle...

  • A sinusoidal wave is traveling on a string with speed 28.0 cm/s. The displacement of the...

    A sinusoidal wave is traveling on a string with speed 28.0 cm/s. The displacement of the particles of the string at x = 8.3 cm is found to vary with time according to the equation y = (1.3 cm) sin[1.6 - (5.4 s-1)t]. The linear density of the string is 6.4 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form y(x,t) = ym sin(kx - ωt), what are...

  • A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the...

    A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.50 m/s. (a) What is the amplitude of the wave? 2.9 Your response differs significantly from the correct answer. Rework your solution from the beginning and check...

  • The equation of a transverse wave traveling along a string is y = (0.11 m)sin[(0.78 rad/m)x...

    The equation of a transverse wave traveling along a string is y = (0.11 m)sin[(0.78 rad/m)x - (14 rad/s)t] (a) What is the displacement y at x = 2.6 m, t = 0.27 s? A second wave is to be added to the first wave to produce standing waves on the string. If the wave equation for the second wave is of the form y(x,t) = ymsin(kx + ωt), what are (b) ym, (c) k, and (d) ω (e) the...

  • The equation of a transverse wave traveling along a string is y = (0.21 m)sin[(0.71 rad/m)x...

    The equation of a transverse wave traveling along a string is y = (0.21 m)sin[(0.71 rad/m)x - (13 rad/s)t] (a) What is the displacement y at x = 3.5 m, t = 0.14 s? A second wave is to be added to the first wave to produce standing waves on the string. If the wave equation for the second wave is of the form y(x,t) = ymsin(kx + ωt), what are (b) ym, (c) k, and (d) ω (e) the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT