Question

eNaICUrate Equilibrium Constants TABLE 26.1 Standard molar Gibbs energies of formation, A,G, for various substances at 298.1
Using the data in table C. to calculate the value of A,S° for the following re actions at 25 Celsius degree and one bar. a. C

I to Caloulate Equilbum Conan TABLE 26.1 Sundand molar Gibbs energies of formation, A,G, for various wbstances at 298.15 K an

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer - Given,

Temperature = 25\degreeC or 298 K [0°C + 273 = 273K]

Pressure = 1 bar

1 kJ = 1000 J

\Deltarxn = ?

Some useful information,

Species \DeltaHf°(kJ/mol) \DeltaGf°(kJ/mol)
C (s) 0 0
O2 (g) 0 0
CO2 (g) -110.525 -137.168
CH4 (g) -74.81 -50.72
C2H2 (g) 226.73 209.2
H2 (g) 0 0
H2O (l) -285.83 -237.129
C2H4 (g) 52.26 68.15

A)

C (s) + O2 (g)  \rightarrow CO2 (g)

We know that,

\DeltaG\degreerxn = \sum n * \Delta G\degreef(products) - \sum n * \Delta G\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaG\degreerxn = 1 * \Delta G\degreef(CO2 (g)) - 1 * \Delta G\degreef(O2 (g)) - 1 *\DeltaG\degreef(C (s))

\DeltaG\degreerxn = [1 * (-137.168 kJ/mol)] - [1 * (0 kJ/mol)] - [1 * (0 kJ/mol)]

\DeltaG\degreerxn = -137.168 kJ/mol

Also,

\DeltaH\degreerxn = \sum n * \Delta H\degreef(products) - \sum n * \Delta H\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaH\degreerxn = 1 * \Delta H\degreef(CO2 (g)) - 1 * \Delta H\degreef(O2 (g)) - 1 *\DeltaH\degreef(C (s))

\DeltaH\degreerxn = [1 * (-110.525 kJ/mol)] - [1 * (0 kJ/mol)] - [1 * (0 kJ/mol)]

\DeltaH\degreerxn = -110.525 kJ/mol

Now,

We know that,

\DeltaG\degreerxn = \Delta H\degreerxn - T \Delta S\degreerxn

Put the values,

-137.168 kJ/mol = -110.525 kJ/mol - 298 K * \Delta S\degreerxn

So,\DeltaS\degreerxn = (137.168 kJ/mol - 110.525 kJ/mol )/ 298 K

\DeltaS\degreerxn = 0.0894 kJ/mol.K or 89.4 J/mol.K [Answer]

B)

CH4 (g) + 2 O2 (g)  \rightarrow CO2 (g) + 2 H2O (l)

We know that,

\DeltaG\degreerxn = \sum n * \Delta G\degreef(products) - \sum n * \Delta G\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaG\degreerxn = 2 * \Delta G\degreef(H2O (l)) + 1 * \Delta G\degreef(CO2 (g)) - 1 *\DeltaG\degreef(CH4 (g)) - 2 *\DeltaG\degreef(O2 (g))

\DeltaG\degreerxn = [2 * (-237.129 kJ/mol)] + [1 * (-137.168 kJ/mol)] - [1 * (-50.72 kJ/mol)] - [2 * (0 kJ/mol)]

\DeltaG\degreerxn = -560.706 kJ/mol

Also,

\DeltaH\degreerxn = \sum n * \Delta H\degreef(products) - \sum n * \Delta H\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaH\degreerxn = 2 * \Delta H\degreef(H2O (l)) + 1 * \Delta H\degreef(CO2 (g)) - 1 *\DeltaH\degreef(CH4 (g)) - 2 *\DeltaH\degreef(O2 (g))

\DeltaH\degreerxn = [2 * (-285.83 kJ/mol)] + [1 * (-110.525 kJ/mol)] - [1 * (-74.81 kJ/mol)] - [2 * (0 kJ/mol)]

\DeltaH\degreerxn = -607.375​​​​​​​ kJ/mol

Now,

We know that,

\DeltaG\degreerxn = \Delta H\degreerxn - T \Delta S\degreerxn

Put the values,

-560.706​​​​​​​ kJ/mol  = -607.375​​​​​​​ kJ/mol - 298 K * \Delta S\degreerxn

So,\DeltaS\degreerxn = (560.706​​​​​​​ kJ/mol - 607.375​​​​​​​ kJ/mol)/ 298 K

\DeltaS\degreerxn = -0.15661 kJ/mol.K or -156.61 J/mol.K [Answer]

C)

C2H2 (g) + H2 (g)  \rightarrow C2H4 (g)

We know that,

\DeltaG\degreerxn = \sum n * \Delta G\degreef(products) - \sum n * \Delta G\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaG\degreerxn = 1 * \Delta G\degreef(C2H4 (g)) - 1 * \Delta G\degreef(C2H2 (g)) - 1 *\DeltaG\degreef(H2 (g))

\DeltaG\degreerxn = [1 * (68.15 kJ/mol)] - [1 * (209.2 kJ/mol)] - [1 * (0 kJ/mol)]

\DeltaG\degreerxn = -141.05 kJ/mol

Also,

\DeltaH\degreerxn = \sum n * \Delta H\degreef(products) - \sum n * \Delta H\degreef(reactants)

where, n = stiochiometric coefficient

\DeltaH\degreerxn = 1 * \Delta H\degreef(C2H4 (g)) - 1 * \Delta H\degreef(C2H2 (g)) - 1 *\DeltaH\degreef(H2 (g))

\DeltaH\degreerxn = [1 * (52.26 kJ/mol)] - [1 * (226.73 kJ/mol)] - [1 * (0 kJ/mol)]

\DeltaH\degreerxn = -174.47 kJ/mol

Now,

We know that,

\DeltaG\degreerxn = \Delta H\degreerxn - T \Delta S\degreerxn

Put the values,

-141.05 kJ/mol = -174.47 kJ/mol - 298 K * \Delta S\degreerxn

So,\DeltaS\degreerxn = (141.05 kJ/mol - 174.47 kJ/mol)/ 298 K

\DeltaS\degreerxn = -0.11215 kJ/mol.K or -112.14 J/mol.K [Answer]

Add a comment
Know the answer?
Add Answer to:
eNaICUrate Equilibrium Constants TABLE 26.1 Standard molar Gibbs energies of formation, A,G", for various substances at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Can Be Used to calculate Equilibrium Constants TABLE 26.1 Standard molar Gibbs energies of formation, A,...

    Can Be Used to calculate Equilibrium Constants TABLE 26.1 Standard molar Gibbs energies of formation, A, G, for various hstances at 298.15 K and one har 1057 Substance Formula 4,6°/kJ-mol- acetylene ammonia C.H,() NH,(g) CHCI) Br(e) CH) C(s) C(s) CO (8) CO(g) 209.20 - 16.367 124.35 3.126 -17.15 2.900 benzene bromine butane carbon(diamond) carbon(graphite) carbon dioxide carbon monoxide ethane ethanol ethene glucose hydrogen bromide hydrogen chloride hydrogen fluoride hydrogen iodide hydrogen peroxide iodine methane methanol CH(E) сHOH(1) CH (8) CH...

  • Using the data in the table calculate ΔGo (Delta Go) and equilibrium the constant Kp for...

    Using the data in the table calculate ΔGo (Delta Go) and equilibrium the constant Kp for the following reactions ( at 298.15K and 1bar). a. 2NO(g) +O2 (g) <----> 2 NO2(g) b. H2(g) + Cl2(g) <------> HCl(g) Based on the equilibrium constant, does the equilibrium favo the reactants or the products? TABLE molar Gibbs energies of formation, A Go, for various LU eJard substances at 29 K and one bar Substance Formula A Go /kJ.mol acetylene C2H2 209.20 ammonia NH3(g)...

  • please answer 17a,b,c 17. Using values for the standard enthalpies of formation (AHY) and standard molar...

    please answer 17a,b,c 17. Using values for the standard enthalpies of formation (AHY) and standard molar entropy (AS on the Appendix, calculate the following thermodynamic values for the complete combustion of ethanol: (10 points) C2H5OH(g) + 302(g) → 2CO2(g) + 3H2O(g) a) The standard enthalpy change (AHº) b) The standard entropy change (AS) c) Use values from a) and b) above to calculate AG° at 298K Formula SU/(K-mol 160 TABLE 16.1 Standard Molar Entropies for Some Common Substances at 25...

  • Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also...

    Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also calculate ΔS ° for this reaction from standard entropies at 25°C. Use these values to calculate ΔG ° for the reaction at this temperature. COCl2(g) + H2O(l ) h CO2(g) + 2HCl(g). Appendix C Thermodynamic Quantities for Substances and Ions at 25°C Substance or lon AH; (kW/mol) 0 AG: (kJ/mol) 0 S° (J/mol-K) 20.87 ΔΗ, (kJ/mol) -946.3 - 33422 AG; {kj/mol) --859,3 -2793 (J/mol-K)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT