Question

Calculating specific heat capacity A constant-pressure calorimeter is often used to find the specific heat capacity...

Calculating specific heat capacity A constant-pressure calorimeter is often used to find the specific heat capacity of a substance if it is not known. A known mass of the substance can be heated and added to water of known mass and initial temperature. Since the specific heat capacity of water is known ( C s,water =4.184J/(g⋅ ∘ C)) , the amount of heat transferred to the water can be calculated by measuring the final temperature of the mixture at thermal equilibrium. This is the same as the amount of heat transferred from the substance according to the law of conservation of energy. Thus we can arrive at the following relationship: − q unknown = −( m unknown × C s,unknown ×Δ T unknown )= q water m water × C s,water ×Δ T water With the unknown substance's mass and change in temperature known, the unknown substance's specific heat capacity can be calculated.

Part C A mass of 47.5 g of an unknown solid initially at 130.0 ∘ C is added to an ideal constant-pressure calorimeter containing 100.0 g of water ( C s,water =4.184 J/(g⋅ ∘ C)) initially at 20.0 ∘ C . After the mixture reaches thermal equilibrium, the final temperature is recorded to be 30.87 ∘ C . What is the specific heat capacity of the unknown solid? Express your answer to three significant figures.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Pastc Heat Balance equation heat lost by the = heat gained by the given mass water. mi ce, CT; -) - ma cz (Tf - Ti) 47:59 xcx

Add a comment
Know the answer?
Add Answer to:
Calculating specific heat capacity A constant-pressure calorimeter is often used to find the specific heat capacity...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...

    A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy sontent of foods. lastered Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.500-g sample of benzoic acid (C H02) in a bomb calorimeter containing 1030. g of water. The temperature increases...

  • The In the laboratory a "coffee cup calorimeter, or constant pressure calorimeter, is frequently used to determi...

    The In the laboratory a "coffee cup calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. A student heats 61.44 grams of titanium to 97.72 °C and then drops it into a cup containing 83.69 grams of water at 21.75 °C. She measures the final temperature to be 27.96 °C. The heat capacity of the calorimeter (sometimes referred to as the calorimeter constant)...

  • A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...

    A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 1.14-g sample of L-ascorbic acid (C6H306) in a bomb calorimeter containing 1040. g of water. The temperature increases from 24.30...

  • In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine...

    In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. Thermometer Stirring red A student heats 68.26 grams of titanium to 99.16 °C and then drops it into a cup containing 80.78 grams of water at 23.25 °C. She measures the final temperature to be 30.68 °C. The heat capacity of the calorimeter (sometimes referred to as the...

  • A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184...

    A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184 J/g K) at initial temperature 80.000 C. A salt weighing 5.445 g is quickly added. The salt has a molar mass of 250.465 g/mol. The final temperature of the solution is 33.49 C. Assume no heat loss to the surroundings. Assume the specific heat capacity of the solution is equal to that of pure water, and that the mass of the solution is equal...

  • a. In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to...

    a. In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solution phase reaction. Since the cup itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter and the value determined is called the calorimeter constant. One way to do this is to use a common metal...

  • A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184...

    A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184 J/g K) at initial temperature 80.000 C. A salt weighing 5.451 g is quickly added. The salt has a molar mass of 124.742 g/mol. The final temperature of the solution is 73.937 C. Assume no heat loss to the surroundings. Assume the specific heat capacity of the solution is equal to that of pure water, and that the mass of the solution is equal...

  • A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184...

    A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184 J/g K) at initial temperature 80.000 C. A salt weighing 7.253 g is quickly added. The salt has a molar mass of 149.325 g/mol. The final temperature of the solution is 7.532 C. Assume no heat loss to the surroundings. Assume the specific heat capacity of the solution is equal to that of pure water, and that the mass of the solution is equal...

  • A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184...

    A coffee cup calorimeter is prepared, containing 100.000 g of water (specific heat capacity = 4.184 J/g K) at initial temperature 80.000 C. A salt weighing 5.398 g is quickly added. The salt has a molar mass of 497.886 g/mol. The final temperature of the solution is 8.675 C. Assume no heat loss to the surroundings. Assume the specific heat capacity of the solution is equal to that of pure water, and that the mass of the solution is equal...

  • In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently use...

    In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solutiorn phase reaction. Thermometer Stirring rod A student heats 63.92 grams of iron to 98.03 °C and then drops it into a cup containing 75.92 grams of water at 24.47 °C. She measures the final temperature to be 30.66 °C The heat capacity of the calorimeter (sometimes referred to as the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT