Question

3. A block of mass m = 6.2 kg, moving on a frictionless surface with a velocity of -6.5 m/s to the right, collides with a blo
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Vi56.5 m/s [m] M m= 6.2 kq V20 f = -0.70m/s after before applying conservation Law of momentiun we eget, m ve + MV = mvp + MV6.2 X 6.5 + OXM= 62x 60-70) + MV → MV = 6:2 (6:5+ 0,70) = 6,2x7 = 44.64 m.kg.5 Now for row from Newton and Law we know that​​​​​​

Add a comment
Know the answer?
Add Answer to:
3. A block of mass m = 6.2 kg, moving on a frictionless surface with a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a...

    A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 kg block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. What is the magnitude of the average force on the 8.40 kg block, while the two blocks are in contact?

  • A block of mass m=7.6kg, moving on a frictionless surface with speed vi= 7.6m/s, makes a...

    A block of mass m=7.6kg, moving on a frictionless surface with speed vi= 7.6m/s, makes a perfectly elastic collision witha block of mass M at rest. After the collision, the 7.6 kg block recoils with a speed of vf=2.5m/s. In the figure, the blocks are in contact for 0.20 s. The average force on the 7.6 kg block, while the two blocks are in contact, is the closest to: 241N, 194N, 289N, 336N, 384N

  • A block of mass = 3.6 kg, moving on a frictionless surface with a speed vi = 9.3.....

    A block of mass m=3.6 kg, moving on a frictionless surface with a speed vi = 9.3 m/s, makes an elastic collision with a block or mass M at rest. After the collision,the 3.6 kg block recoils with a speed of v1 = 2.7 m/s. The speed of the other block after the collision is closest to: A) 6.6 m/s B) 8.0 m/s C) 9.3 m/s D) 10.7 m/s E)12.0 m/s

  • A block of mass m= 4.4 kg, moving on frictionless surface with a speed v1=9.2 m/s makes a sudden perfectly elastic collision with a second block of mass M

    A block of mass m= 4.4 kg, moving on frictionless surface with a speed v1=9.2 m/s makes a sudden perfectly elastic collision with a second block of mass M, as shown in the figure. The second block is originally at rest. Just after the collision, the 4.4-kg block recoils with a speed of vf=2.5 m/s What is the mass M of the second block?

  • A block of mass m= 4.4 kg, moving on frictionless surface with a speed = 9.2...

    A block of mass m= 4.4 kg, moving on frictionless surface with a speed = 9.2 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 4.4 kg block recoils with a speed of Vi= 2.5 m/s. In Figure 8.2, the mass Mis closest to: A) 7.7 kg B) 12 kg C) 5.6 kg D) 21 kg E) 44 kg Answer: A m before after {P. - EP Vor - Vai Vsi...

  • 1- A ball with mass M, moving horizontally at 2.8 m/s, collides elastically with a block...

    1- A ball with mass M, moving horizontally at 2.8 m/s, collides elastically with a block with mass 3.6M that is initially hanging at rest from the ceiling on the end of a 58-cm wire. Find the maximum angle through which the block swings after it is hit, in degrees. 2- A 0.15 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.72 m/s. It has a head-on collision with a 0.30...

  • A block of mass m1 = 1.0 kg initially moving to the right with a speed...

    A block of mass m1 = 1.0 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.4 kg initially moving to the left with a speed of 2.6 m/s as shown in figure (a). The spring constant is 530N/m. (A) Find the velocities of the two blocks after the collision. (B) During the collision, at the instant block 1...

  • A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the...

    A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 - 3.9 kg initially moving to the left with a speed of 1.8 m/s as shown in figure (a). The spring constant is 505 N/m in A moving block collides with another moving block with a spring attached: (a) before...

  • A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with...

    A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with a second 1.0-kg block traveling east at 2.0m/s. a) Determine the final velocity of the blocks. b)Determine the kinetic energy of the first block before the collision. c)Determine the kinetic energy of the second block before the collision. d)Determine the kinetic energy of the first block after the collision. e)Determine the kinetic energy of the second block after the collision.

  • Block B of mass 10.0 kg is placed in contact with an unstretched spring on a...

    Block B of mass 10.0 kg is placed in contact with an unstretched spring on a horizontal, frictionless surface. The other end of the spring is attached to a fixed support. Block A with a mass of 4.00 kg is moving with a speed of 20.0 m/s when it collides with and sticks to B. (a) What is the speed of the combined blocks after the collision? The blocks compress the spring 2.60 m before coming to rest momentarily. (b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT