Question

Version B Tests 6. An object attached with a spring undergoes simple ha displacement x = (1.2m) Cos (1.51 C). Compare with th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a=(1:2M) Cos () a= A cos (wt) amplitude l A = 1.2m (i 2 = 1-265 (ts Tit) x(0) = 1.2 oso = 1.2 [: Coso = 1) x ) = 1.2.CoS (15

Add a comment
Know the answer?
Add Answer to:
Version B Tests 6. An object attached with a spring undergoes simple ha displacement x =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7. An object attached with a spring undergoes simple harmonic motion, represented by the displacement = (1.0m) Cos...

    7. An object attached with a spring undergoes simple harmonic motion, represented by the displacement = (1.0m) Cos (1.5m t) . Compare with the standard equation for simple harmonic equation: x = A cos (w t). (i) Find the amplitude of oscillation? ute ew m .s (ii) Calculate the displacement x at t 0, 1, 2, 3, 4 and 5 seconds and filled the table below (calculator should be in radian mode for finding x values ) Displacement x (m)...

  • A 0.8 kg mass attached to a vertical spring undergoes simple harmonic motion with a frequency...

    A 0.8 kg mass attached to a vertical spring undergoes simple harmonic motion with a frequency of 0.5 Hz. a) What is the period of the motion and the spring constant? b) If the amplitude of oscillation is 10 cm and the mass starts at its lowest point at time zero, write the equation describing the displacement of the mass as a function of time and find the position of the mass at times 1, 2, 1.5 s, and 1.25...

  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of s...

    Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of spring constant 2500 N/m as shown in the Figure below. The amplitude or maximum displacement X max is 7m. Calculate O a) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x...

  • A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below

    Part A: 10 points each (Questions 1-4) 1. A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below. The amplitude or maximum displacement Xmax is 5m. Calculatea) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters and "t"...

  • Test 5 Venice a Page Version A 5. A simple harmonic motion of an object of...

    Test 5 Venice a Page Version A 5. A simple harmonic motion of an object of m Part B: 20 points each notion of an object of mass m 8 kg attached with a springs represented as time vs displacement graph in the following gue following parameters. gan in the following figure. Find the 1.5mm x (a) Amplitude = (b) Time Period = (time for I wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency =

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • 14.5 The displacement as a function of time of a 0.05-kg object attached to a spring vibrating in...

    14.5 The displacement as a function of time of a 0.05-kg object attached to a spring vibrating in simple harmonic motion is shown below. x (cm) 2.00 1.00 0.0034 -9.00 For this motion, find the following: a) The amplitude b) The period c) The angular frequency d) The maximum speed e) The maximum acceleration f What is the amount of mechanical energy of the system during the motion? g) Write an equation for its position as a function of time....

  • 2. A small mass moves in simple harmonic motion according to the equation x = 2...

    2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters a the time in seconds. Find the amplitude and frequency of oscillation by comparing with the ga equation . X = A cos (w t).

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displac...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. 1.5m - АААААА 0.3 23 23 tis) -1.5m (a) Amplitude = (b) Time Period = (time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT