Question

an electron may freely move on a ring with a radius r, the schrodinger equation for this problem

Problem 4 (2.0 points) An electron may freely move on a ring with a radius r. The Schrödinger equation for this problem is: 0

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) caeMO) sare (in) 2 (Acine) 4 (0+21) - 4 (0) 4 ) is A Sownton of SCHRÖ DINGER EPA. o ju cheimer y * (hemp) = 1 Lim ($+20)t

Add a comment
Know the answer?
Add Answer to:
an electron may freely move on a ring with a radius r, the schrodinger equation for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • JO) A Pi- electron in benzene molecule may be described in quantum com make the assumption...

    JO) A Pi- electron in benzene molecule may be described in quantum com make the assumption that benzene is circular. In such a case, the potential energy is constant (1.e. V =0) and Schrodinger equation for a particle of mass me constrained to move on a circle of radius a is: (-h7/8 Tma)dade - Em for 0 SOS 27. Here is the angle that describes the position of the particle (i.e. pi-electron) around the ning a) Show that the solution...

  • 4. Estimate the transition frequency for the poryphyrin molecule from m-11 to m 12, assuming that the pi electrons can be modeled as a particle in a ring of radius 440 picometers. (C 7. The...

    4. Estimate the transition frequency for the poryphyrin molecule from m-11 to m 12, assuming that the pi electrons can be modeled as a particle in a ring of radius 440 picometers. (C 7. The most probable distance of the electron from the nucleus in a 1ls state hydrogen atom (with wavefunction V1) can be determined by 21. A (A) solving the eigenvalue equation: Rvw rV., finding the maximum in the 1s radial distribution function by differentiation. (C) substituting vi,...

  • Recall that an energy eigenfunction of any central potential V (r) may be writtren as ψn`m(r,...

    Recall that an energy eigenfunction of any central potential V (r) may be writtren as ψn`m(r, θ, φ) = Rn`(r)Y`m(θ, φ). This problem explores the behavior of ψ in the vicinity of the origin r = 0. Recall that the function u(r) = rRn`(r) satisfies the equation − ~ 2 2m d 2u dr2 + ~ 2 `(` + 1) 2mr2 + V (r) u = Eu, (1) where E is the energy eigenvalue. Note that Eq. (1) has the...

  • A system consists of two particles of mass mi and m2 interacting with an interaction potential...

    A system consists of two particles of mass mi and m2 interacting with an interaction potential V(r) that depends only on the relative distancer- Iri-r2l between the particles, where r- (ri,/i,21) and r2 22,ひ2,22 are the coordinates of the two particles in three dimensions (3D) (a) /3 pointsl Show that for such an interaction potential, the Hamiltonian of the system H- am▽ri _ 2m2 ▽22 + V(r) can be, put in the form 2M where ▽ and ▽ are the...

  • 8.4 The Two-Dimensional Central-Force Problem The 2D harmonic oscillator is a 2D central force pr...

    8.4 The Two-Dimensional Central-Force Problem The 2D harmonic oscillator is a 2D central force problem (as discussed in TZD Many physical systems involve a particle that moves under the influence of a central force; that is, a force that always points exactly toward, or away from, a force center O. In classical mechanics a famous example of a central force is the force of the sun on a planet. In atomic physics the most obvious example is the hydrogen atom,...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT