Question

6. A disk with a mass M, a radius R, and a rotational inertia of I- MR is attached to a horizontal spring which has a spring constant of as shown in the diagram. When the spring is stretched by a distance x and then released from rest, the disk rolls without slipping while the spring is attached to the frictionless axle within the center of the disk (a) Calculate the maximum translational velocity of the disk in terms of M.R, x, k. (b) What would happen to the period of this motion if the spring constant of the spring increased? Justifýy your answeT (o) What would happen to the period of this motion if the surface was now frictionless and the disk was not al- lowed to roll? Justify your answer

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
6. A disk with a mass M, a radius R, and a rotational inertia of I-...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. Consider the system shown: m, J, R The wheel with mass m, radius R, and rotational moment of i...

    6. Consider the system shown: m, J, R The wheel with mass m, radius R, and rotational moment of inertia J rolls without slipping down the incline shown. The spring affixed to its axle has rest length h, and is neither extended nor compressed when r 0. The external force F is directed parallel to the direction of rolling. Find the total kinetic energy and potential energy in the system. Assume the gravitational potential energy to be zero when the...

  • * A ball of mass M and radius R has a rotational inertia of · The...

    * A ball of mass M and radius R has a rotational inertia of · The ball is released from rest and rolls without slipping down the ramp with no frictional loss of energy. The ball is projected vertically upward off a ramp as shown in the diagram, reaching a maximum height yaz above the point where it leaves the ramp. In terms of h, ymar is

  • A uniform disc with mass M and radius R = 0.10 m is mounted on a...

    A uniform disc with mass M and radius R = 0.10 m is mounted on a frictionless, horizontal axle, as shown in the figure. The light cord wrapped around the disk is pulled so that it has a constant tension of T = 20.0 N. Starting from the rest, the disk performs a rotational motion with a constant angular acceleration a = 2 rad/s2 Find mass M of the disk. (Note that the moment of inertia of the disk is...

  • A uniform disk of radius r and mass md rolls without slipping on a cylindrical surface...

    A uniform disk of radius r and mass md rolls without slipping on a cylindrical surface and is attached to a uniform slender bar AB of mass mb. The bar is attached to a spring of constant K and can rotate freely in the vertical plane about point A as shown in the figure . If the bar AB is displaced by small angle 0 and released, determine The energy of the system in terms of theta and theta '....

  • 4) A solid uniform sphere mass M an radius R pivots around its center, which is...

    4) A solid uniform sphere mass M an radius R pivots around its center, which is rigged to. ntal spring of negligible mass and spring constant k. The sphere rolls without slipping along a horizontal surface. The spring is initially stretched an amount Xmax and is released from rest. Derive an expression for period of the sphere's simple harmonic motion, expressed in terms of the above variables

  • [Use g = 10 m/s^2] A non-uniform wheel of mass 5 kg and moment of inertia...

    [Use g = 10 m/s^2] A non-uniform wheel of mass 5 kg and moment of inertia 1/3 mR^2 is set on an incline whose height is h = 4 meters and length is L = 20 meters. The wheel is released from rest at the top of the incline and rolls without slipping to the bottom. What is the wheel's translational kinetic energy at the bottom of the incline? What is the wheel's rotational kinetic energy at the bottom of...

  • Bridging Problem: Oscillating and Rolling Two uniform, solid cylinders of radius R and total mass M...

    Bridging Problem: Oscillating and Rolling Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest on a horizontal tabletop (Figure 1). A frictionless ring at the rod's center is attached to a spring of force constant k, the spring's other end is fixed. The cylinders are pulled to the left a distance I, stretching the spring, then released from rest. Due to friction between the tabletop...

  • A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center

    A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see figure . The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angleθ = 43.6o with the horizontal; the axle rests on the surface while the wheel extends into a...

  • Chapter 11, Problem 081 A uniform wheel of mass 10.0 kg and radius 0.400 m is...

    Chapter 11, Problem 081 A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see the figure). The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg-m2. The wheel is initially at rest at the top of a surface that is inclined at angle 58.4° with the horizontal; the axle rests on the surface while the wheel...

  • suppose a wheel with a moment of inertia I=2.5kg*m², a radius of R=40cm, and a mass...

    suppose a wheel with a moment of inertia I=2.5kg*m², a radius of R=40cm, and a mass of 6kg were spinning at 4 rad/s before being released. If it rolls without slipping, how fast will it roll? A. 1.92 m/s B. 1.36 m/s C. 1.85 m/s D. 2.17 m/s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT