Question

10.8 A 2.0 kg mass (m2) moves with an initial velocity Vunit = 4.0 + 5.0) - 2.0 m/s. It collides with a second mass (m2) that
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer. - By conservation of linear Momentum Initial Final mui + m₂(o) = mult mava micu-ul) = mu - 2{(uê +59 – 2²)- (-22 +36)use conservation of momentum

Add a comment
Know the answer?
Add Answer to:
10.8 A 2.0 kg mass (m2) moves with an initial velocity Vunit = 4.0 + 5.0)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 10.8 A 2.0 kg mass (mi) moves with an initial velocity Vu,nit = 4.01 +5.0 -...

    10.8 A 2.0 kg mass (mi) moves with an initial velocity Vu,nit = 4.01 +5.0 - 2.0k m/s. It collides with a second mass (m2) that was initially at rest. Immediately after colliding, mi is found to have a velocity of £3,0 hy) Vufinal = -2.0f + 3.0 m/s. Find the velocity that m2 has immediately after the collision

  • A 2.0 kg ball moving east with a velocity of 5.0 m/s collides with a 8.0...

    A 2.0 kg ball moving east with a velocity of 5.0 m/s collides with a 8.0 kg ball moving west with velocity 2.0 m/s. After collision, the ball of mass 2.0 kg moves with a velocity of 2.0 m/s towards east, what is the velocity of the second ball?

  • One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i...

    One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i collides with a second particle of mass m2 = 2.00 kg that is initially at rest. After the collision mı goes off with a final speed of 4.20 m/s in a direction 32.0° above i. V 5.4 ms (a) Find the final velocity (in terms of magnitude AND direction) of m2. agnitude AND direction) of m. Vi = 4.2 m/s (HINT: Find the direction...

  • The figure below show three masses m =1.5 kg, m2=2.8 kg, and mz=4.0 kg which undergo...

    The figure below show three masses m =1.5 kg, m2=2.8 kg, and mz=4.0 kg which undergo two successive collisions. The first collision between my, which has an initial velocity v=6.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m +m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 3 Select one: O 2.74 m/s O 3.24 m/s...

  • A 2.0-kg mass moving at 5.0 m/s suddenly collides head-on with a 3.0-kg mass at rest....

    A 2.0-kg mass moving at 5.0 m/s suddenly collides head-on with a 3.0-kg mass at rest. If the collision is perfectly inelastic, what is the speed of the masses just after the collision? 2.5 m/s 10 m/s 2.0 m/s 0 m/s, since the collision is inelastic

  • As shown in the figure, a wooden bl with mass m2 is initially at rest on...

    As shown in the figure, a wooden bl with mass m2 is initially at rest on a horizontal, frictionless table. A second wooden ball with mass m moving with a speed 2.00 m/s, collides with m2. Assume m, moves initially along the +x-axis. After the collision, mi moves with speed 1.00 m/s at an angle of θ=48.0° to the positive x-axis. (Assume m1=0.200 kg and m2=0.300 kg.)  (a) Determine the speed (in m/s) of the 0.300 kg ball after the collision...

  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • Consider a completely inelastic collision in which a particle of mass m1 with initial velocity v...

    Consider a completely inelastic collision in which a particle of mass m1 with initial velocity v collides head on with a particle of mass m2, initially at reat. (a) What fraction of the initial kinetic energy was lost? (b) View the collision from the center of mass frame and determine if the kinetic enegy of the colliding particle remain conserved. Consider a completely inelastic collision in which a particle of mass with initial velocity collides head on with a particle...

  • The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two...

    The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=8.2 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT