Question
Consider a completely inelastic collision in which a particle of mass m1 with initial velocity v collides head on with a particle of mass m2, initially at reat. (a) What fraction of the initial kinetic energy was lost? (b) View the collision from the center of mass frame and determine if the kinetic enegy of the colliding particle remain conserved.

Consider a completely inelastic collision in which a particle of mass with initial velocity collides head on with a particle
0 0
Add a comment Improve this question Transcribed image text
Answer #1

de (a) K. E_linitially) - + poklu / 1 m₂ (0)2 2 zotu i (TT 2 since momentum remain conserved i m, v + m₂ (o) v lm, + m2) Tu.. Fraction of lost K. E # / m m₂ 82 cm, tm) 2 m, ut - Como Ma .m, the centre of (6) In the ge as taking origin mass frame, rim 2 v. 2 (m, rm2) - liv 2 Since liv rem ain (زنا i. K. E conserved cs Scanned with CamScanner

Add a comment
Know the answer?
Add Answer to:
Consider a completely inelastic collision in which a particle of mass m1 with initial velocity v...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a completely inelastic collision in which a particle of mass with initial velocity collides head...

    Consider a completely inelastic collision in which a particle of mass with initial velocity collides head on with a particle of mass , initially at rest.(a) What fraction of the initial kinetic energy was lost? (b)View the collision from the center of mass frame and determine if the kinetic energy of the colliding particle remain conserved. Consider a completely inelastic collision in which a particle of mass with initial velocity collides head on with a particle of mass , initially...

  • need help with all portion in this prblem can i get all the steps 1. Consider...

    need help with all portion in this prblem can i get all the steps 1. Consider a completely inelastic collision in which a particle of mass m, with initial velocity y collides head on with a particle of mass my, initially at rest(a) What fraction of the initial kinetic energy was lost? (b)View the collision from the center of mass frame and determine if the kinetic energy of the colliding particle remain conserved. (7-points)

  • Two equal mass object experience a totally inelastic collision. Case 1: Mass 1 has an initial...

    Two equal mass object experience a totally inelastic collision. Case 1: Mass 1 has an initial velocity of 10.0 m/s in the negative y-direction, while mass 2 has an initial velocity of 5.00 m/s in the positive x-direction. (2-D collision) Case 2: Mass 1 has an initial velocity of 10.0 m/s in the positive x-direction, while mass 2 has an initial velocity of 10.0 m/s in the negative x-direction. (1-D collision) What was kinetic energy conserved in each of the...

  • A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg

    A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of massm3 = 2.70kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without friction.Part AFind v2v1, the...

  • 5. The figures on the right show a disk with radius, a = 0.20 m, and mass, M = 0.80 kg, resting on a frictionless table. One particle with mass, m1-M/4, with velocity, v- 4 m/s, slides along the stab...

    5. The figures on the right show a disk with radius, a = 0.20 m, and mass, M = 0.80 kg, resting on a frictionless table. One particle with mass, m1-M/4, with velocity, v- 4 m/s, slides along the stable, and collides with the disk at the point shown. A second particle with mass, m2, moving with velocity v2-4v collides with the disk at the point shown. The two masses collide with the disk at the same time, and after...

  • Particle A is at rest, and particle B collides head-on with it. The collision is completely...

    Particle A is at rest, and particle B collides head-on with it. The collision is completely inelastic, so the two particles stick together after the collision and move off with a common velocity. The masses of the particles are different, and no external forces act on them. The de Broglie wavelength of particle B before the collision is 1.8 × 10-34 m. What is the de Broglie wavelength of the object that moves off after the collision?

  • 1 Elastic collision A bumper car of mass m1 = 300kg is initially moving to the...

    1 Elastic collision A bumper car of mass m1 = 300kg is initially moving to the right at velocity V1, before = 8m/s and collides head-on with another bumper car of mass m2 = 200kg that is motionless, V2, before = 0. After the collision, the heavy bumper car is moving at a speed of v1,after = 1.6m/s. (a) (5 pts) Calculate the total kinetic energy before the collision (b) (5 pts) Calculate the kinetic energy of the heavy car...

  • One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i...

    One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i collides with a second particle of mass m2 = 2.00 kg that is initially at rest. After the collision mı goes off with a final speed of 4.20 m/s in a direction 32.0° above i. V 5.4 ms (a) Find the final velocity (in terms of magnitude AND direction) of m2. agnitude AND direction) of m. Vi = 4.2 m/s (HINT: Find the direction...

  • A mass m1 moving at a velocity of v1 collides elastically with a mass m2 which...

    A mass m1 moving at a velocity of v1 collides elastically with a mass m2 which is initially at rest. a. what fraction of the original kinetic energy does mass 1 retain after the collision? Give your answer in terms of the masses. (Hint: Find the ratio of Kafter/Kbefore for the first mass) b. a mass m1 is placed on a frictionless ramp at a height of h. It is then released and slides down without rolling to elastically collide...

  • Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional...

    Two particles of mass m1 = 2.0 kg and m2 = 2.6 kg undergo a one-dimensional head-on collision as shown in the figure below. Their initial velocities along x are vii = 15 m/s and v2,--6.8 m/s. The two particles stick together after the collision (a completely inelastic collision. (Assume to the right as the positive direction.) mi m2 (a) Find the velocity after the collision. 2.6782 m/s (b) How much kinetic energy is lost in the collision? 153.907x

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT