Question

A mass m1 moving at a velocity of v1 collides elastically with a mass m2 which...

A mass m1 moving at a velocity of v1 collides elastically with a mass m2 which is initially at rest.

a. what fraction of the original kinetic energy does mass 1 retain after the collision? Give your answer in terms of the masses. (Hint: Find the ratio of Kafter/Kbefore for the first mass)

b. a mass m1 is placed on a frictionless ramp at a height of h. It is then released and slides down without rolling to elastically collide with a second mass m2. If the first mass returns to a height of h/4, what is the mass of the second mass in terms of the first?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A mass m1 moving at a velocity of v1 collides elastically with a mass m2 which...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass m1, moves across a frictionless surface with speed ui. It collides elastically with block 2, of mass m2...

    Block 1, of mass m1, moves across a frictionless surface with speed ui. It collides elastically with block 2, of mass m2, which is at rest (vi=0). (Figure 1) After the collision, block 1 moves with speed uf, while block 2 moves with speed vf. Assume that m1>m2, so that after the collision, the two objects move off in the direction of the first object before the collision.Part BWhat is the final speed uf of block 1?Express uf in terms...

  • An atom of mass m1 = m moving in the x direction with speed v1 =...

    An atom of mass m1 = m moving in the x direction with speed v1 = v collides elastically with an atom of mass m2 = 4m at rest. After the collision the first atom moves in the y direction. Find the direction of motion of the second atom. _______ ° counterclockwise from the +x-axis Find the speeds of both atoms (in terms of v) after the collision. v'1 =_____ v v'2 =______ v

  • Block 1, of mass m1, moves across a frictionless surface with speed ui . It collides elastically with block 2, of mas...

    Block 1, of mass m1, moves across a frictionless surface with speed ui . It collides elastically with block 2, of mass m2, which is at rest (vi = 0). After the collision, block 1 moves with speed uf , while block 2 moves with speed vf . Assume that m1 > m2, so that after the collision, the two objects move off in the direction of the first object before the collision. What is the final speed uf of...

  • Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...

    Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. (a) What is the height h? (b) What is the...

  • If an object M1=40kg elastically collides with another object m2=30kg which happens to be initially at...

    If an object M1=40kg elastically collides with another object m2=30kg which happens to be initially at rest, what would be the velocity of m1 before and after the collision. 9l60 Pots y the CollsiOn 0 2 ,略 offe)

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.4 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?...

  • A block of mass m1 = 1.4 kg initially moving to the right with a speed...

    A block of mass m1 = 1.4 kg initially moving to the right with a speed of 3.0 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 2.5 kg initially moving to the left with a speed of 1.8 m/s. The spring constant is 565N/m. What if m1 is initially moving at 3.2 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. (b)...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 3.2 m and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction ?k is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.1 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.1 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction is ?k and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Express your answer in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT