Question

A block of mass m1 = 1.4 kg initially moving to the right with a speed...

A block of mass m1 = 1.4 kg initially moving to the right with a speed of 3.0 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 2.5 kg initially moving to the left with a speed of 1.8 m/s. The spring constant is 565N/m.

What if m1 is initially moving at 3.2 m/s while m2 is initially at rest?

(a) Find the maximum spring compression in this case.

(b) What will be the individual velocities of the two masses (v1 and v2) after the spring extended fully again? (That is, when the two masses separate from each other after the collision is complete.)

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A block of mass m1 = 1.4 kg initially moving to the right with a speed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A block of mass m1 = 1.0 kg initially moving to the right with a speed...

    A block of mass m1 = 1.0 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.4 kg initially moving to the left with a speed of 2.6 m/s as shown in figure (a). The spring constant is 530N/m. (A) Find the velocities of the two blocks after the collision. (B) During the collision, at the instant block 1...

  • A block of massm1 = 1.5 kg initially moving to the right with a speed of...

    A block of massm1 = 1.5 kg initially moving to the right with a speed of 2.6 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.7 kg initiall at rest. The spring constant is 569N/m. (a) Find the maximum spring compression in this case. x =  m What will be the individual velocities of the two masses (v1 and v2) after the spring extended fully again? (That is, when the...

  • A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the...

    A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 - 3.9 kg initially moving to the left with a speed of 1.8 m/s as shown in figure (a). The spring constant is 505 N/m in A moving block collides with another moving block with a spring attached: (a) before...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely...

    A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely inelastic collision with a stationary block of mass m2 = 0.300 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without...

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT