Question

7. The Absorption Spectrum of Cobalt(II) Chloride Procedure Getting Started 1. Your laboratory instructor may ask that you wo2. ANJUPUU ON W Chloride 4. Prepare a blank by filling an empty cuvette 3/4 full with distilled water. Remeniber: • All cuvet7. The Absorpului upouu Chloride standar 8. You are now ready to collect absorbance-concentration data for the a. Start data3 7. The Absorption Spectrum of Cobalt(II) Chloride 4,7016 - (incluck units) 4. Identifying the known concentration Unknown n

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I have checked your work, which is excellent!

According to Beer's law: A = k.C.l

Where 'A' is the absorbance of the solution, which is dimensionless.

'k' is molar absorptivity of the Cobalt(II) chloride

'C' is the concentration of the solution (the dimension is mol/L or 'M')

'l' is the path length = 1 cm (in general)

Therefore, A = k.C cm

Here, 'C' is in mol/mL

Therefore, the dimension of 'k' = dimension of A/C.l = 1/(M * cm) = M-1.cm-1

Add a comment
Know the answer?
Add Answer to:
7. The Absorption Spectrum of Cobalt(II) Chloride Procedure Getting Started 1. Your laboratory instructor may ask...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Beer’s Law Objective : We will explore an application of absorption spectroscopy using calibration curves and...

    Beer’s Law Objective : We will explore an application of absorption spectroscopy using calibration curves and Beer’s Law. Use the “LAB : HOW TO…” link from the class website if you need help with how to use balance, Bunsen burner… and such. Introduction: You may write this information in your lab notebook for your own reference. It can’t be cut and pasted. Different solutions have different spectral properties. In this portion of the experiment those properties will be utilized to...

  • 1. For the solutions that you will prepare in Step 7 of Part I, calculate the...

    1. For the solutions that you will prepare in Step 7 of Part I, calculate the [FeSCN) using the equation CVC V2. Presume that all of the SCN ions react and therefore in Part of the experiment, mol of SCN=mol of FeSCN Record these values in the table below and in me data table for part / Standard solution. Beaker number [FeSCN2 2. Define equilibrium constant Keg. 3. Write the equilibrium constant expressions for each of the following chemical reactions:...

  • PROCEDURE A. ABSORBANCE SPECTRA 1. Obtain three cuvettes. Add-2mL of the following samples to them: red...

    PROCEDURE A. ABSORBANCE SPECTRA 1. Obtain three cuvettes. Add-2mL of the following samples to them: red dye, blue dye, yellow dye. 2. Obtain a spectrum for each dye according to the provided directions (water is the blank). 3. For each of the three dyes (red, yellow, and blue) record the wavelength for the largest peak in the visible range (380 nm to 750 nm), Record this in the data table below. Save the red dye for part B. 4. Identify...

  • 1. A series of solutions, containing cobalt (I1) chloride were prepared with concentrations shown below. Using...

    1. A series of solutions, containing cobalt (I1) chloride were prepared with concentrations shown below. Using PhET Simulation find the absorbance values corresponding to each solution at the preset value of wave length 549 nm, using 1 cm wide cuvette. Concentration of Co (II), mM 121 98.0 60.0 24.0 15.0 Absorbance Plot a calibration line Absorbance versus Concentration. From the graph determine the specific absorptivity. 2. Using the data you obtained from the graph in the previous problem determine the...

  • Part C. Quantitative Spectroscopy Wavelength(A) Absorbance Amax-10 Amax 10 Wavelength used for Analysis in Part C:...

    Part C. Quantitative Spectroscopy Wavelength(A) Absorbance Amax-10 Amax 10 Wavelength used for Analysis in Part C: Solution Concentration Absorbance % Transmittance Standard 1 Standard 2 Standard 3 Standard 4 Unknown 0.20 M Show an example calculation obtaining the molarity of the standards. a. Copper Standard 2: Obtain additional 0.20 M CuSO4 solution from the tray. Pipet 10 mL of 0.20 M CuSO4 solution into a 50 mL Erlenmeyer flask. Pipet 10 mL of DI water into the same tube and...

  • I am stuck on how to find concentration for standards and unknowns. Any kind of help would be appreciated. The correct...

    I am stuck on how to find concentration for standards and unknowns. Any kind of help would be appreciated. The corrected absorbance is = Blank - absorbance 1. Prepare the BCA working reagent. Use a graduated cylinder and add 30 ml of the BCA reagent into a 50 ml Erlenmeyer flask. Use the appropriate micropipette to add 600 uL of the CuSO4 solution into the flask and mix by swirling the flask. Record the exact mass of albumin and the...

  • Part II. Determination of Unknown SCN concentration. 0.387 9=3663.24-0.0427 1. Use the absorbance you measured for...

    Part II. Determination of Unknown SCN concentration. 0.387 9=3663.24-0.0427 1. Use the absorbance you measured for part II and the equation you obtained from part I to calculate the concentration of FeSCN In the cuvette. Show your calculations with formulas and report the result. 2. Since KSCR was limiting reactant, you may consider amounts of FeSCN and SCN to be the same. KSCN was diluted from the original unknown concentration in the bottle (c1) when the required by the protocol...

  • I had clearer images. Part 1 - Making Standard solutions. 1. Into a clean, dry beaker...

    I had clearer images. Part 1 - Making Standard solutions. 1. Into a clean, dry beaker combine the solutions from the table for each calibration solution using the appropriate pipettes. Pour the contents of the beaker into a provided cuvettes (do not fill the cuvettes to the top). Pour any excess from the sample beaker into a waste beaker, rinse the sample beaker, and continue making solutions until you have the blank and four solutions for the calibration. Calibration Solution...

  • Part I. Prepare and Test Standard Solutions 1. Obtain and wear goggles. 2. Label four small...

    Part I. Prepare and Test Standard Solutions 1. Obtain and wear goggles. 2. Label four small beakers 1-4. Obtain small volumes of 0.200 M Fe(NO3)3, 0.0020 M SCN-, and distilled water. Prepare four solutions according to the chart below Use graduated cylinders to measure the solutions. Mix each solution thoroughly Measure and record the temperature of either of the solutions - remember that the equilibrium constant (Kea) depends on temperature. Don't cross-contaminate the solutions. Technical note 1: The Fe(NO3)3 solutions...

  • How do I calculate the concentrations for my data sheet lab. I have not started my...

    How do I calculate the concentrations for my data sheet lab. I have not started my lab yet but I just need to see how i would calculate it with absorbance. Do i just use Beer's law or is there any other method of solving the concentrations. 7. Weigh 1.45-1.55 g of copper(I) sulfate pentahydrate in a 50 mL beaker. 8. Dissolve the copper(II) sulfate pentahydrate in -15 mL of water 9. Add the aqueous solution of copper(II) to a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT