Question

Suppose that x1, . . . , xn are a random sample having probability density function...

Suppose that x1, . . . , xn are a random sample having probability density function f(x; θ) = (θ + 1)x^θ , 0 < x < 1. (1) Here the parameter θ > 0.

(a) Show that P(Xi ≤ b; θ) = b^(θ+1) for f(x; θ) given in (1).

(b) Suppose now that because of a recurring computer glitch in storing the observations, only a random subset of the xi are observed. For the rest of the observations, it is only known that xi ≤ 1/2. Let δi = 1 or 0 according to whether xi is observed or not and let d = P i δi denote the number of xi observed; thus n − d of the xi are only known to satisfy xi ≤ 1/2. Determine the likelihood, L(θ), and a 2-dimensional sufficient statistic. Note that d is a random quantity dependent on the data. You can use the result of (b) even if you were unable to show it.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Suppose that x1, . . . , xn are a random sample having probability density function...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . Suppose that x1, . . . , xn are a random sample having probability density...

    . Suppose that x1, . . . , xn are a random sample having probability density function f(x; θ) = (θ + 1)x^θ , 0 < x < (1) Here the parameter θ > 0. (a) Determine the log-likelihood, l(θ), and a 1-dimensional sufficient statistic. (b) Show that P(Xi ≤ b; θ) = b θ+1 for f(x; θ) given in (1). (c) Suppose now that because of a recurring computer glitch in storing the observations, only a random subset of...

  • 1. Suppose that xi, ,xn are a random sample having probability density function Here the parameter...

    1. Suppose that xi, ,xn are a random sample having probability density function Here the parameter θ > 0. (a) Determine the log likelibood, 10), and a 1- dimensional (a) Determine the log-likelihood, l(0), and a 1-dimensional sufficient statistic. (b) Show that P(XiS b;0) = +1 for f(x:0) given in (1). (c) Suppose now that because of a recurring computer glitch in storing the observations, only a random subset of the r, are observed. For the rest of the observations,...

  • 1. Suppose that ri,...,In are a random sample having probability density function Here the parameter 0...

    1. Suppose that ri,...,In are a random sample having probability density function Here the parameter 0 >0 (a) Determine the log-likelihood, l(0), and a 1-dimensional sufficient statistic. (b) Show that P(Xi b;0)-μ+1 for f(x;0) given in (1). (c) Suppose now that because of a recurring computer glitch in storing the observations, only a random subset of the ai are observed. For the rest of the observations, it is only known that z; < 1/2. Let δί-1 or 0 according to...

  • 1. Suppose that r,., n are a random sample having probability density function Here the parameter...

    1. Suppose that r,., n are a random sample having probability density function Here the parameter θ > 0. (a) Determine the log-likelihood, (0), and a 1-dimensional sufficient statistic. (b) Show that P(X, S b:0) for f(r;0) given in (1) (c) Suppose now that because of a recurring computer glitch in storing the observations, only a +1 for f(r; random subset of the x, are observed. For the rest of the observations, it is only known that z; < 1/2....

  • 1. Suppose that ri,.., n are a random sample having probability density function Here the paran...

    1. Suppose that ri,.., n are a random sample having probability density function Here the paran neter θ > 0. (a) Determine the log-likelihood, (0), and a 1-dimensional sufficient statistio (b) Show that PX, b:0) =&+1 for f(z:0) given in (1). (c) Suppose now that because of a recurring computer glitch in storing the observations, only a random subset of the ai are observed. For the rest of the observations, it is only known that Xi < 1/2. Let δί...

  • Let X1, . . . , Xn be a random sample from a population with density...

    Let X1, . . . , Xn be a random sample from a population with density 8. Let Xi,... ,Xn be a random sample from a population with density 17 J 2.rg2 , if 0<、〈릉 0 , if otherwise ( a) Find the maximum likelihood estimator (MLE) of θ . (b) Find a sufficient statistic for θ (c) Is the above MLE a minimal sufficient statistic? Explain fully.

  • A random variable X has probability density function f(x)=(a-1)x^(-a),for x>=1. (a) For independent observations x1,...,xn show...

    A random variable X has probability density function f(x)=(a-1)x^(-a),for x>=1. (a) For independent observations x1,...,xn show that the log-likelihood is given by, l(a;x1,...,xn)=nlog(a-1)-a (b) Hence derive an expression for the maximum likelihood estimate for ↵. (c) Suppose we observe data such that n = 6 and 6 i=1 log(xi) = 12. Show that the associated maximum likelihood estimate for ↵ is given by aˆ ↵ =1 .5. logri We were unable to transcribe this image

  • 2. (a) Suppose that x1,... , Vn are a random sample from a gamma distribution with...

    2. (a) Suppose that x1,... , Vn are a random sample from a gamma distribution with shape parameter α and rate parameter λ, Here α > 0 and λ > 0. Let θ-(α, β). Determine the log-likelihood, 00), and a 2-dimensional sufficient statistic for the data (b) Suppose that xi, ,Xn are a random sample from a U(-9,0) distribution. f(x; 8) otherwise Here θ > 0, Determine the likelihood, L(0), and a one-dimensional sufficient statistic. Note that the likelihood should...

  • Let XI, X2, , Xn İs a random sample from the probability density function Use factorization...

    Let XI, X2, , Xn İs a random sample from the probability density function Use factorization theorem to show that X(1) = min(X1 , . . . , Xn) is sufficient for θ Is X(1) minimal sufficient for θ? a. b.

  • 2. Let X1, X2, ..., Xn be a random sample from a Bernoulli(6) distribution with prob- ability fun...

    Advanced Statistics, I need help with (c) and (d) 2. Let X1, X2, ..., Xn be a random sample from a Bernoulli(6) distribution with prob- ability function Note that, for a random variable X with a Bernoulli(8) distribution, E [X] var [X] = θ(1-0) θ and (a) Obtain the log-likelihood function, L(0), and hence show that the maximum likelihood estimator of θ is 7l i= I (b) Show that dE (0) (c) Calculate the expected information T(e) EI()] (d) Show...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT